Cho hàm số \(y={{x}^{3}}-3m{{x}^{2}}+3\left( {{m}^{2}}-1 \right)x-{{m}^{3}}\) với \(m\) là tham số; gọi \(\left( C \right)\) là đồ thị của hàm số đã cho. Biết rằng, khi \(m\) thay đổi, điểm cực đại của đồ thị \(\left( C \right)\) luôn nằm trên một đường thẳng \(d\) cố định. Xác định hệ số góc \(k\) của đường thẳng \(d.\)
A. \(k=-\,3.\)
B. \(k=3.\)
C. \(k=-\frac{1}{3}.\)
D. \(k=\frac{1}{3}.\)
Lời giải của giáo viên
Ta có \({y}'=3{{x}^{2}}-6mx+3\left( {{m}^{2}}-1 \right);\,\,\,{y}'=0\Leftrightarrow {{x}^{2}}-2mx+{{m}^{2}}-1=0\Leftrightarrow \left[ \begin{align} & x=m+1 \\& x=m-1 \\\end{align} \right..\)
Dễ thấy \(m+1>m-1\) và \(a=1>0\Rightarrow x=m-1\) là điểm cực đại của đồ thị \(\left( C \right).\)
Khi đó \(\begin{align} & y\left( m-1 \right)={{\left( m-1 \right)}^{3}}-3m{{\left( m-1 \right)}^{2}}+3\left( {{m}^{2}}-1 \right)\left( m-1 \right)-{{m}^{3}} \\ & y\left( m-1 \right)={{m}^{3}}-3{{m}^{2}}+3m-1-3{{m}^{3}}+6{{m}^{2}}-3m+3{{m}^{3}}-3{{m}^{2}}-3m+3-{{m}^{3}} \\& y\left( m-1 \right)=-3m+2 \\\end{align}\)
Suy ra
\(\left\{ \begin{array}{l}
x = m - 1\\
y = 2 - 3m
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
3x = 3m - 3\\
y = 2 - 3m
\end{array} \right. \Leftrightarrow 3x + y + 1 = 0.\)
Vậy điểm cực đại của đồ thị \(\left( C \right)\) thuộc đường thẳng cố định \(d:3x+y+1=0\Rightarrow k=-3.\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y=\left( 3m+1 \right)x+3+m\) vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-1.\)
Cho đồ thị hàm số như hình vẽ. Mệnh đề nào dưới đây là đúng ?
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)=\dfrac{1}{2{{e}^{x}}+3}\) thỏa mãn \(F\left( 0 \right)=10.\) Tìm \(F\left( x \right).\)
Cho hàm số \(y=f\left( x \right),\) có bảng biến thiên như sau: Mệnh đề nào dưới đây đúng ?
Tìm giá trị lớn nhất của hàm số sau \(y=\sqrt{x+1}+\sqrt{3-x}\)
Có 10 đội bóng thi đấu theo thể thức vòng tròn một lượt, thắng được 3 điểm, hòa 1 điểm, thua 0 điểm. Kết thúc giải đấu, tổng cộng điểm số của tất cả 10 đội là 130. Hỏi có bao nhiêu trận hòa ?
Xét các số thực \(x,\,\,y\) với \(x\ge 0\) thỏa mãn điều kiện:\({{2018}^{x\,+\,3y}}+{{2018}^{xy\,+\,1}}+x+1={{2018}^{-\,xy\,-\,1}}+\frac{1}{{{2018}^{x\,+\,3y}}}-y\left( x+3 \right)\)Gọi \(m\) là giá trị nhỏ nhất của biểu thức \(T=x+2y.\) Mệnh đề nào sau đây đúng ?
Cho \(F\left( x \right)=\left( a{{x}^{2}}+bx-c \right){{e}^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)=\left( 2018{{x}^{2}}-3x+1 \right){{e}^{2x}}\) trên khoảng \(\left( -\,\infty ;+\,\infty \right).\) Tính tổng \(T=a+2b+4c.\)
Trong không gian với hệ tọa độ \(Oxyz,\) cho hai vectơ \(\vec{u},\,\,\vec{v}\) tạo với nhau một góc \({{120}^{0}}\) và \(\left| {\vec{u}} \right|=2;\)\(\left| {\vec{v}} \right|=5.\) Tính giá trị biểu thức \(\left| \vec{u}+\vec{v} \right|.\)
Cho phương trình lượng giác \(2m\sin x\cos x+4{{\cos }^{2}}x=m+5,\) với \(m\) là một phần tử của tập hợp \(E=\left\{ -\,3;-\,2;-\,1;0;1;2 \right\}.\) Có bao nhiêu giá trị của \(m\) để phương trình đã cho có nghiệm ?
Tìm nguyên hàm của hàm số \(f\left( x \right)=\frac{2}{4x-3}.\)
Tìm tập xác định \(D\) của hàm số \(y={{\left( {{x}^{2}}-3x+2 \right)}^{-\,3}}.\)
Cho hình trụ \(\left( T \right)\) có \(\left( C \right)\) và \(\left( {{C}'} \right)\) là hai đường tròn đáy nội tiếp hai mặt đối diện của một hình lập phương. Biết rằng, trong tam giác cong tạo bởi đường tròn \(\left( C \right)\) và hình vuông ngoại tiếp của \(\left( C \right)\) có một hình chữ nhật kích thước \(a\,\,\times \,\,2a\) (như hình vẽ dưới đây). Tính thể tích \(V\) của khối trụ \(\left( T \right)\) theo \(a.\)
Tìm \(L=\lim \left( \dfrac{1}{1}+\dfrac{1}{1+2}+\,...\,+\dfrac{1}{1+2+\,...\,+n} \right).\)
Nếu \({{\log }_{2}}\left( {{\log }_{8}}x \right)={{\log }_{8}}\left( {{\log }_{2}}x \right)\) thì \({{\left( {{\log }_{2}}x \right)}^{2}}\) bằng