Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ 1;4 \right]\), đồng biến trên đoạn \(\left[ 1;4 \right]\) và thỏa mãn đẳng thức \(x+2x.f\left( x \right) ={{\left[ {f}'\left( x \right) \right]}^{2}},\forall x\in \left[ 1;4 \right]\). Biết rằng \(f\left( 1 \right)=\frac{3}{2}\), tính \(I = \int\limits_1^4 {f\left( x \right){\rm{d}}x} \)?
A. \(I = \frac{{1186}}{{45}}\)
B. \(I = \frac{{1174}}{{45}}\)
C. \(I = \frac{{1222}}{{45}}\)
D. \(I = \frac{{1201}}{{45}}\)
Lời giải của giáo viên
Ta có \(x+2x.f\left( x \right) ={{\left[ {f}'\left( x \right) \right]}^{2}} \Rightarrow \sqrt{x}.\sqrt{1+2f\left( x \right)}={f}'\left( x \right) \Rightarrow \frac{{f}'\left( x \right)}{\sqrt{1+2f\left( x \right)}}=\sqrt{x}, \forall x\in \left[ 1;4 \right]\).
Suy ra \(\int{\frac{{f}'\left( x \right)}{\sqrt{1+2f\left( x \right)}}\text{d}x}=\int{\sqrt{x}\text{d}x}+C \Leftrightarrow \int{\frac{\text{d}f\left( x \right)}{\sqrt{1+2f\left( x \right)}}\text{d}x}=\int{\sqrt{x}\text{d}x}+C\)
\(\Rightarrow \sqrt{1+2f\left( x \right)}=\frac{2}{3}{{x}^{\frac{3}{2}}}+C\). Mà \(f\left( 1 \right)=\frac{3}{2} \Rightarrow C=\frac{4}{3}\). Vậy \(f\left( x \right)=\frac{{{\left( \frac{2}{3}{{x}^{\frac{3}{2}}}+\frac{4}{3} \right)}^{2}}-1}{2}\).
Vậy \(I=\int\limits_{1}^{4}{f\left( x \right)\text{d}x}=\frac{1186}{45}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối nón có bán kính đáy bằng r, chiều cao h. Thể tích V của khối nón là:
Tập nghiệm của bất phương trình \({{\log }_{2}}x<3\) là
Trong không gian cho tam giác ABC vuông tại A có \(AB=\sqrt{3}\) và \(\widehat{ACB}={{30}^{\text{o}}}\). Tính thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC.
Cho khối nón có đường sinh bằng 5 và bán kính đáy bằng 3. Thể tích khối nón bằng
Tập nghiệm của bất phương trình \({\log ^2}x - 13\log x + 36 > 0\) là:
Trong không gian Oxyz cho mặt phẳng \((P)\text{ }:x+y+z-2=0\). Điểm nào sau đây thuộc mặt phẳng (P)?
Trong mặt phẳng Oxy, cho các điểm A, B như hình vẽ bên. Trung điểm của đoạn thẳng AB biểu diễn số phức
Viết phương trình mặt phẳng qua \(M\left( 1;-1;2 \right),N\left( 3;1;4 \right)\) và song song với trục Ox
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên:
Khẳng định nào sau đây là khẳng định đúng:
Trong không gian với hệ trục Oxyz, cho tam giác ABC có \(A\left( -1;3;2 \right), B\left( 2;0;5 \right)\) và \(C\left( 0;-2;1 \right)\). Phương trình trung tuyến AM của tam giác ABC là.
Gọi \({{z}_{1}}\) là nghiệm phức có phần ảo âm thỏa mãn: \({{z}^{2}}+6z+13=0\). Tìm phần ảo của số phức \(w={{\left( i+1 \right)}^{2}}{{z}_{1}}\).
Cho hàm số \(y={{x}^{4}}+4{{x}^{2}}\) có đồ thị \(\left( C \right)\). Tìm số giao điểm của đồ thị \(\left( C \right)\) và trục hoành.