Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ. Tìm kết luận đúng?
A. Hàm số \(f\left( x \right)\) có điểm cực tiểu là x=2.
B. Hàm số \(f\left( x \right)\) có giá trị cực đại là -1.
C. Hàm số \(f\left( x \right)\) có điểm cực đại là x=4.
D. Hàm số \(f\left( x \right)\) có giá trị cực tiểu là 0.
Lời giải của giáo viên
Dựa vào đồ thị của hàm số ta suy ra được hàm số \(f\left( x \right)\) có giá trị cực tiểu là 0.
CÂU HỎI CÙNG CHỦ ĐỀ
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số sau:
Số giao điểm của đồ thị hàm số \(y={{x}^{4}}-2{{x}^{2}}+2\) và trục hoành là
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ
Khẳng định nào sau đây đúng?
Một viên gạch hoa hình vuông cạnh 40 cm được thiết kế như hình bên dưới. Diện tích mỗi cánh hoa (phần tô đậm) bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và đồ thị hàm số \(y={f}'\left( x \right)\) cho bởi hình vẽ bên. Đặt \(g\left( x \right)=f\left( x \right)-\frac{{{x}^{2}}}{2}, \forall x\in \mathbb{R}\). Hỏi đồ thị hàm số \(y=g\left( x \right)\) có bao nhiêu điểm cực trị
Cho khối trụ có chiều cao bằng 4a và bán kính đáy bằng 2a. Thể tích khối trụ đã cho bằng
Cho số phức z thỏa mãn \(\left( 1+2i \right)z=5{{\left( 1+i \right)}^{2}}\). Tổng bình phương phần thực và phần ảo của số phức \(w=\bar{z}+iz\) bằng:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\frac{{{x}^{3}}}{3}+2{{x}^{2}}+3x-4\) trên đoạn \(\left[ -4;\,0 \right]\) lần lượt là M và n. Giá trị của tổng M+n bằng
Hàm số nào dưới đây đồng biến trên \(\mathbb{R}\)?
Cho hình chóp S.ABC có tam giác ABC vuông tại A, AB=a, AC=2a. SA vuông góc với mặt phẳng đáy \(\left( ABC \right)\) và \(SA=a\sqrt{3}\). Tính thể tích V của khối chóp S.ABC.
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=9\). Tìm tọa độ tâm của mặt cầu \(\left( S \right).\)
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ a\,;\,b \right]\) và \(f\left( a \right)=-2, f\left( b \right)=-4\). Tính \(T=\int\limits_{a}^{b}{{f}'\left( x \right)\,\text{d}x}\).
Rút gọn biểu thức \(P={{a}^{\frac{1}{3}}}.\sqrt[6]{a}\) với a>0.