Câu hỏi Đáp án 2 năm trước 36

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị hàm số như hình bên dưới đây:

Có bao nhiêu giá trị nguyên của tham số m để phương trình \({f^2}\left( x \right) - \left( {m + 5} \right)\left| {f\left( x \right)} \right| + 4m + 4 = 0\) có 7 nghiệm phân biệt?

A. 1

B. 2

C. 3

Đáp án chính xác ✅

D. 4

Lời giải của giáo viên

verified HocOn247.com

Đặt \(t = \left| {f\left( x \right)} \right| \Rightarrow \)  Phương trình trở thành:

\({t^2} - \left( {m + 5} \right)t + 4m + 4 = 0 \Leftrightarrow \left( {t - 4} \right)\left( {t - m - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
t = 4\\
t = m + 1
\end{array} \right.\)  (*).

Đồ thị hàm số  y = |f(x)|

Ta thấy phương trình f(x) = t  có các trường hợp sau:

+) Vô nghiệm.

+) Có 2 nghiệm phân biệt

+) Có 3 nghiệm phân biệt

+) Có 4 nghiệm phân biệt

Do đó để phương trình (*) có 7 nghiệm x phân biệt thì phương trình (*) có 2 nghiệm \({t_1},{t_2}\) phân biệt thỏa mãn  \(\Rightarrow 0 < m + 1 < 4 \Leftrightarrow  - 1 < m < 3\) .

Kết hợp điều kiện \(m \in Z \Rightarrow m \in \left\{ {0;1;2} \right\}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB// CD), BC = 2a,AB = AD = DC = a với a > 0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của ACBD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x > 0; M khác OD. Mặt phẳng \(\left( \alpha  \right)\) đi qua M và song song với hai đường thẳng SDAC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Mệnh đề nào sau đây Sai?

Xem lời giải » 2 năm trước 42
Câu 3: Trắc nghiệm

Đồ thị hàm số sau đây là đồ thị hàm số nào?

Xem lời giải » 2 năm trước 42
Câu 4: Trắc nghiệm

Cho biết \({9^x} - {12^2} = 0\) , tính giá trị biểu thức  \(P = \frac{1}{{{3^{ - x - 1}}}} - {8.9^{\frac{{x - 1}}{2}}} + 19\)

Xem lời giải » 2 năm trước 41
Câu 5: Trắc nghiệm

Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính R = 6cm. I, K là 2 điểm trên đoạn OA sao cho OI = IK = KA . Các mặt phẳng \(\left( \alpha  \right),\left( \beta  \right)\) lần lượt qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính \({r_1},{r_2}\). Tính tỉ số \(\frac{{{r_1}}}{{{r_2}}}\)

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Trong các lăng trụ sau, lăng trụ nào không nội tiếp được trong một mặt cầu?

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Tìm tập xác định D của hàm số \(y = {\left( {5 + 4x - {x^2}} \right)^{\sqrt {2019} }}\)

Xem lời giải » 2 năm trước 40
Câu 8: Trắc nghiệm

Cho hình trụ có bán kính đáy R và độ dài đường sinh là l. Thể tích khối trụ là:

Xem lời giải » 2 năm trước 39
Câu 9: Trắc nghiệm

Cho hàm số y = f(x) có đạo hàm trên (a; b). Phát biểu nào sau đây sai?

Xem lời giải » 2 năm trước 39
Câu 10: Trắc nghiệm

Tìm tất cả các giá trị của tham số m để phương trình \(\log _3^23x + {\log _3}x + m - 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng (0; 1)

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Cho biết \({\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}}\), khẳng định nào sau đây Đúng?

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = x,AD = 1 . Biết rằng góc giữa đường thẳng A'C  và mặt phẳng \(\left( {ABB'A'} \right)\)  bằng 30°. Tìm giá trị lớn nhất \({V_{\max }}\) của thể tích khối hộp ABCD.A'B'C'D'

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \({\left( {\sqrt[3]{3} + \sqrt[5]{5}} \right)^{2019}}\)

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Trong tất cả các hình thang cân có cạnh bên bằng 2 và cạnh đáy nhỏ bằng 4, tính chu vi P của hình thang có diện tích lớn nhất.

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AD, BC; G là trọng tâm của tam giác BCD. Khi đó, giao điểm của đường thẳng MG và mp  là:

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »