Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên R và có đồ thị của hàm số \(y = f'\left( x \right)\) như hình vẽ.
Xét hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right)\).
Mệnh đề nào sau đây sai?
A. Hàm số \(g(x)\) nghịch biến trên (0;2).
B. Hàm số \(g(x)\) nghịch biến trên \(\left( {2;\, + \infty } \right)\)
C. Hàm số \(g(x)\) nghịch biến trên \(\left( { - \infty ;\, - 2} \right)\)
D. Hàm số \(g(x)\) nghịch biến trên (- 1;0)
Lời giải của giáo viên
Xét:
\(\begin{array}{l}
g\left( x \right) = f\left( {{x^2} - 2} \right)\\
g'\left( x \right) = f'\left( {{x^2} - 2} \right).2x\\
g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
f'\left( {{x^2} - 2} \right) = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
{x^2} - 2 = - 1\\
{x^2} - 2 = 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 1\\
x = - 1\\
x = 2\\
x = - 2
\end{array} \right.
\end{array}\)
Bảng xét dấu \(g’(x)\)
Suy ra hàm số g(x) nghịch biến trên (-1;0) là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong bốn giới hạn sau đây, giới hạn nào bằng \( - \infty \)?
Giá trị nhỏ nhất của hàm số \(y = 2{\sin ^4}x + {\cos ^2}x + 3\) bằng:
Một tổ có 4 học sinh nam và 5 học sinh nữ. Số cách xếp các học sinh đó thành một hàng dọc sao cho 4 học sinh nam đứng liền nhau là:
Với giá trị nào của tham số m thì phương trình \(3\sin x + m\cos x = 5\) vô nghiệm?
Bất phương trình \(m{x^2} - 2\left( {m + 1} \right)x + m + 7 < 0\) vô nghiệm khi:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(SA \bot {\rm{(}}ABCD{\rm{)}}\). Gọi M là hình chiếu của A trên SB. Khẳng định nào sau đây đúng?
Với giá trị nào của tham số m thì hàm số \(y = - \frac{1}{3}{x^3} - m{x^2} + (2m - 3)x - m + 2\) nghịch biến trên R?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh \(a\), SA vuông góc với đáy và \(SA = a\sqrt 3 \). Góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng:
Dân số thế giới cuối năm 2010, ước tính khoảng 7 tỉ người. Hỏi với mức tăng trưởng 1,5% mỗi năm thì sau ít nhất bao nhiêu năm nữa dân số thế giới sẽ lên đến 10 tỉ người?
Với giá trị nào của tham số \(m\) thì hàm số \(y = {x^3} - m{x^2} + (2m - 3)x - 3\) đạt cực đại tại \(x=1\)?
Với giá trị nào của tham số \(m\) thì hàm số \(y = {x^3} - 6{x^2} + mx + 1\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\)?
Cho hai đường thẳng song song \(d_1, d_2\). Trên \(d_1\) lấy 6 điểm phân biệt, trên \(d_2\) lấy 4 điểm phân biệt. Xét tất cả các tam giác được tạo thành khi nối các điểm đó với nhau. Chọn ngẫu nhiên một tam giác. Xác suất để thu được tam giác có hai đỉnh thuộc \(d_1\) là:
Phương trình các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{1 - 3x}}{{x + 2}}\) lần lượt là:
Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(a\). Côsin của góc giữa mặt bên và mặt đáy bằng: