Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Mệnh đề nào sau đây SAI?
A. Hàm số \(y = f\left( x \right)\) có hai điểm cực trị.
B. Nếu \(\left| m \right| > 2\) thì phương trình \(f\left( x \right) = m\) có nghiệm duy nhất.
C. Hàm số \(y = f\left( x \right)\) có cực tiểu bằng \( - 1\).
D. Giá trị lớn nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ { - 2;\,2} \right]\) bằng \(2\).
Lời giải của giáo viên
Đáp án A: đúng.
Đáp án B: Với \(m > 2\) hoặc \(m < - 2\) thì đường thẳng \(y = m\) cắt đồ thị hàm số tại một điểm duy nhất nên B đúng.
Đáp án C: Hàm số đạt cực tiểu tại \(x = - 1\) chứ không phải đạt cực tiểu bằng \( - 1\) nên C sai.
Đáp án D: Giá trị lớn nhất của hàm số trên \(\left[ { - 2;2} \right]\) đạt được bằng \(2\) tại \(x = - 2\) nên D đúng.
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm điều kiện cần và đủ của \(a,\,\,b,\,\,c\) để phương trình \(a\sin x + b\cos x = c\) có nghiệm?
Tìm giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực đại tại \(x = 0\)
Tập tất cả giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 3x + 1\) đồng biến trên \(\mathbb{R}\) là
Tìm nghiệm của phương trình \({\sin ^4}x - {\cos ^4}x = 0\).
Gọi \(l,h,\,r\) lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của một hình nón. Tính diện tích xung quanh \({S_{xq}}\) của hình nón đó theo \(l,h,\,r\).
Hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Tính tổng \(T\) của các giá trị nguyên của tham số \(m\) để phương trình \({e^x} + \left( {{m^2} - m} \right){e^{ - x}} = 2m\) có đúng hai nghiệm phân biệt nhỏ hơn \(\frac{1}{{\log e}}.\)
Tìm số giá trị nguyên thuộc đoạn \(\left[ { - 2019;2019} \right]\) của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{\sqrt {x - 3} }}{{{x^2} + x - m}}\) có đúng hai đường tiệm cận.
Cho hình chóp \(S.ABCD\) có đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) , đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\) , có \(AB = a,\,AD = 2a,BC = a.\) Biết rằng \(SA = a\sqrt 2 .\) Tính thể tích \(V\) của khối chóp \(S.BCD\) theo \(a.\)
Cho hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2\cos x - 1}}{{{{\sin }^2}x}}\) trên khoảng \(\left( {0;\pi } \right).\) Biết rằng giá trị lớn nhất của \(F\left( x \right)\) trên khoảng \(\left( {0;\pi } \right)\) là \(\sqrt 3 \). Chọn mệnh đề đúng trong các mệnh đề sau?
Tìm số hạng đầu \({u_1}\) của cấp số nhân \(\left( {{u_n}} \right)\) biết rằng \({u_1} + {u_2} + {u_3} = 168\) và \({u_4} + {u_5} + {u_6} = 21.\)
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như bên dưới. Mệnh đề nào dưới đây Sai?
Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = x - \sqrt {4 - {x^2}} \). Tính tổng \(M + m\).
Cho hình lập phương \(ABCD.A'B'C'D'.\) Biết tích của khoảng cách từ điểm \(B'\) và điểm \(D\) đến mặt phẳng \(\left( {D'AC} \right)\) bằng \(6{a^2}\left( {a > 0} \right)\) . Giả sử thể tích của khối lập phương \(ABCD.A'B'C'D'\) là \(k{a^3}.\) Chọn mệnh đề đúng trong các mệnh đề sau.
Tính giới hạn \(L = \lim \dfrac{{{n^3} - 2n}}{{3{n^2} + n - 2}}\).