Câu hỏi Đáp án 2 năm trước 37

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\) và chiều cao bằng \(a\sqrt 2 \). Tính khoảng cách từ tâm \(O\) của đáy \(ABCD\) đến một mặt bên theo \(a.\)

A.  \(d = \frac{{a\sqrt 5 }}{2}\)

B. (d = \frac{{a\sqrt 3 }}{2}\) 

C.  \(d = \frac{{2a\sqrt 5 }}{3}\)         

D. \(d = \frac{{a\sqrt 2 }}{3}\) 

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Ta có: \(SO \bot \left( {ABCD} \right)\)

Gọi \(M\) là trung điểm của \(BC\) .

Kẻ \(OK \bot SM\)

Ta có :  \(\left\{ \begin{array}{l}OM \bot BC\\SO \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SOM} \right) \Rightarrow BC \bot OK\,\,\,\,\left( 1 \right)\)

Mà \(OK \bot SM\,\,\left( 2 \right)\) (cách dựng)

Từ (1) và (2) \( \Rightarrow OK \bot \left( {SBC} \right)\)

Hay \(OK = d\left( {O;\left( {SBC} \right)} \right)\)

Áp dụng hệ thức lượng trong tam giác vuông cho tam giác \({\Delta _v}SOM\) ta có :

\(\begin{array}{l}\frac{1}{{O{K^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{2{a^2}}} + \frac{1}{{\frac{{{a^2}}}{4}}} = \frac{9}{{2{a^2}}}\\ \Rightarrow O{K^2} = \frac{{2{a^2}}}{9} \Rightarrow OK = \frac{{a\sqrt 2 }}{3}\end{array}\)

Chọn D

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tìm điều kiện cần và đủ của \(a,\,\,b,\,\,c\) để phương trình \(a\sin x + b\cos x = c\) có nghiệm? 

Xem lời giải » 2 năm trước 49
Câu 2: Trắc nghiệm

Tập tất cả giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 3x + 1\) đồng biến trên \(\mathbb{R}\) là 

Xem lời giải » 2 năm trước 45
Câu 3: Trắc nghiệm

Tìm giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực đại tại \(x = 0\) 

Xem lời giải » 2 năm trước 45
Câu 4: Trắc nghiệm

Tìm nghiệm của phương trình \({\sin ^4}x - {\cos ^4}x = 0\). 

Xem lời giải » 2 năm trước 44
Câu 5: Trắc nghiệm

Tìm số giá trị nguyên thuộc đoạn \(\left[ { - 2019;2019} \right]\) của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{\sqrt {x - 3} }}{{{x^2} + x - m}}\) có đúng hai đường tiệm cận.

Xem lời giải » 2 năm trước 42
Câu 6: Trắc nghiệm

Gọi \(l,h,\,r\) lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của một hình nón. Tính diện tích xung quanh \({S_{xq}}\) của hình nón đó theo  \(l,h,\,r\). 

Xem lời giải » 2 năm trước 42
Câu 7: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Mệnh đề nào sau đây SAI?

Xem lời giải » 2 năm trước 42
Câu 8: Trắc nghiệm

Hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Tính tổng \(T\) của các giá trị nguyên của tham số \(m\) để phương trình \({e^x} + \left( {{m^2} - m} \right){e^{ - x}} = 2m\) có đúng hai nghiệm phân biệt nhỏ hơn \(\frac{1}{{\log e}}.\) 

Xem lời giải » 2 năm trước 42
Câu 10: Trắc nghiệm

Cho hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2\cos x - 1}}{{{{\sin }^2}x}}\) trên khoảng \(\left( {0;\pi } \right).\) Biết rằng giá trị lớn nhất của \(F\left( x \right)\) trên khoảng \(\left( {0;\pi } \right)\) là \(\sqrt 3 \). Chọn mệnh đề đúng trong các mệnh đề sau? 

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) , đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\) , có \(AB = a,\,AD = 2a,BC = a.\) Biết rằng \(SA = a\sqrt 2 .\) Tính thể tích \(V\) của khối chóp \(S.BCD\) theo \(a.\) 

Xem lời giải » 2 năm trước 40
Câu 12: Trắc nghiệm

Tính giới hạn \(L = \lim \dfrac{{{n^3} - 2n}}{{3{n^2} + n - 2}}\). 

Xem lời giải » 2 năm trước 40
Câu 13: Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'.\) Biết tích của khoảng cách từ điểm \(B'\) và điểm \(D\) đến mặt phẳng \(\left( {D'AC} \right)\) bằng \(6{a^2}\left( {a > 0} \right)\) . Giả sử thể tích của khối lập phương \(ABCD.A'B'C'D'\) là \(k{a^3}.\) Chọn mệnh đề đúng trong các mệnh đề sau.

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Cho tích phân \(I = \int\limits_0^2 {f\left( x \right)dx = 2} .\) Tính tích phân \(J = \int\limits_0^2 {\left[ {3f\left( x \right) - 2} \right]} dx\) . 

Xem lời giải » 2 năm trước 39
Câu 15: Trắc nghiệm

Cho lăng trụ đứng tam giác \(ABC.A'B'C'\) . Gọi \(M,{\rm N},P,Q\) là các điểm lần lượt thuộc các cạnh \(AA',\,BB',CC',\,B'C'\) thỏa mãn \(\frac{{AM}}{{AA'}} = \frac{1}{2},\,\frac{{B{\rm N}}}{{BB'}} = \frac{1}{3},\,\frac{{CP}}{{CC'}} = \frac{1}{4},\,\,\frac{{C'Q}}{{C'B'}} = \frac{1}{5}\). Gọi \({V_1},\,{V_2}\) lần lượt là thể tích khối tứ diện \(MNPQ\) và khối lăng trụ \(ABC.A'B'C'.\) Tính tỷ số \(\frac{{{V_1}}}{{{V_2}}}.\)

Xem lời giải » 2 năm trước 39

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »