Cho hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2\cos x - 1}}{{{{\sin }^2}x}}\) trên khoảng \(\left( {0;\pi } \right).\) Biết rằng giá trị lớn nhất của \(F\left( x \right)\) trên khoảng \(\left( {0;\pi } \right)\) là \(\sqrt 3 \). Chọn mệnh đề đúng trong các mệnh đề sau?
A. \(F\left( {\frac{\pi }{6}} \right) = 3\sqrt 3 - 4\)
B. \(F\left( {\frac{{2\pi }}{3}} \right) = \frac{{\sqrt 3 }}{2}\)
C. \(F\left( {\frac{\pi }{3}} \right) = - \sqrt 3 \)
D. (F\left( {\frac{{5\pi }}{6}} \right) = 3 - \sqrt 3 \)
Lời giải của giáo viên
Ta có:
\(\begin{array}{l}F\left( x \right) = \int {\frac{{2\cos x - 1}}{{{{\sin }^2}x}}dx} = 2\int {\frac{{\cos x}}{{{{\sin }^2}x}}dx} - \;\;\int {\frac{1}{{{{\sin }^2}x}}dx} \\\,\,\,\,\,\,\,\,\,\,\,\, = 2\int {\frac{{d\left( {\sin x} \right)}}{{{{\sin }^2}x}} + \cot x + C = - \frac{2}{{\sin x}} + \cot x + C.} \end{array}\)
Có \(F'\left( x \right) = f\left( x \right) = 0 \Leftrightarrow 2\cos x - 1 = 0 \Leftrightarrow \cos x = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{3} + k2\pi \end{array} \right.\;\left( {k \in Z} \right)\)
\(\begin{array}{l}x \in \left( {0;\;\pi } \right) \Rightarrow x = \frac{\pi }{3} \Rightarrow \mathop {Max}\limits_{\left( {0;\pi } \right)} F\left( x \right) = \sqrt 3 \;\;khi\;\;x = \frac{\pi }{3}.\\ \Rightarrow F\left( {\frac{\pi }{3}} \right) = \sqrt 3 \Leftrightarrow - \frac{2}{{\sin \frac{\pi }{3}}} + \cot \frac{\pi }{3} + C = \sqrt 3 \Leftrightarrow - \sqrt 3 + C = \sqrt 3 \Leftrightarrow C = 2\sqrt 3 \\ \Rightarrow F\left( x \right) = - \frac{2}{{\sin x}} + \cot x + 2\sqrt 3 \\ \Rightarrow \left\{ \begin{array}{l}F\left( {\frac{\pi }{6}} \right) = - 4 + 3\sqrt 3 \\F\left( {\frac{{2\pi }}{3}} \right) = \frac{{\sqrt 3 }}{3}\\F\left( {\frac{\pi }{3}} \right) = \sqrt 3 \\F\left( {\frac{{5\pi }}{6}} \right) = - 4 + \sqrt 3 \end{array} \right..\end{array}\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm điều kiện cần và đủ của \(a,\,\,b,\,\,c\) để phương trình \(a\sin x + b\cos x = c\) có nghiệm?
Tìm số giá trị nguyên thuộc đoạn \(\left[ { - 2019;2019} \right]\) của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{\sqrt {x - 3} }}{{{x^2} + x - m}}\) có đúng hai đường tiệm cận.
Hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Tập tất cả giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 3x + 1\) đồng biến trên \(\mathbb{R}\) là
Cho hình chóp \(S.ABCD\) có đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) , đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\) , có \(AB = a,\,AD = 2a,BC = a.\) Biết rằng \(SA = a\sqrt 2 .\) Tính thể tích \(V\) của khối chóp \(S.BCD\) theo \(a.\)
Tìm giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực đại tại \(x = 0\)
Tìm tất cả các giá trị của tham số \(m\) để phương trình\(\frac{1}{3}\left| {co{s^3}x} \right| - 3co{s^2}x + 5\left| {\cos x} \right| - 3 + 2m = 0\)có đúng bốn nghiệm phân biệt thuộc đoạn \(\left[ {0;2\pi } \right]\)
Cho chiếc trống như hình vẽ, có đường sinh là nửa elip được cắt bởi trục lớn với độ dài trục lơn bằng \(80cm,\) độ dài trục bé bằng \(60cm\) . Tính thể tích \(V\) của trống (kết quả làm tròn đến hàng đơn vị)
Tìm nghiệm của phương trình \({\sin ^4}x - {\cos ^4}x = 0\).
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = 2a,\,\,AA' = a\sqrt 3 \) Tính thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\) theo \(a\) ?
Cho hàm số \(y = \frac{{mx + 1}}{{x - 2m}}\) với tham số \(m \ne 0\). Giao điểm của hai đường tiệm cận của đồ thị hàm số thuộc đường thẳng có phương trình nào dưới đây?
Tìm tập nghiệm \(S\) của bất phương trình \({\left( {\frac{1}{2}} \right)^{ - {x^2} + 3x}} < \frac{1}{4}\)
Gọi \(l,h,\,r\) lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của một hình nón. Tính diện tích xung quanh \({S_{xq}}\) của hình nón đó theo \(l,h,\,r\).
Tính tổng \(T\) của các giá trị nguyên của tham số \(m\) để phương trình \({e^x} + \left( {{m^2} - m} \right){e^{ - x}} = 2m\) có đúng hai nghiệm phân biệt nhỏ hơn \(\frac{1}{{\log e}}.\)
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\) và chiều cao bằng \(a\sqrt 2 \). Tính khoảng cách từ tâm \(O\) của đáy \(ABCD\) đến một mặt bên theo \(a.\)