Tìm nghiệm của phương trình \({\sin ^4}x - {\cos ^4}x = 0\).
A. \(x = \frac{\pi }{4} + k\frac{\pi }{2},\,\,k \in \mathbb{Z}\)
B. \(x = \frac{\pi }{4} + k\pi ,\,\,k \in \mathbb{Z}\)
C. \(x = \pm \frac{\pi }{4} + k2\pi ,\,\,k \in \mathbb{Z}\)
D. \(x = k\frac{\pi }{2},\,\,k \in \mathbb{Z}\)
Lời giải của giáo viên
Xét \(\cos x = 0 \Rightarrow pt \Leftrightarrow {\sin ^4}x = 0\) (vô lý) \( \Rightarrow \cos x = 0\) không là nghiệm của phương trình đã cho.
\(\begin{array}{l}{\sin ^4}x - {\cos ^4}x = 0 \Leftrightarrow {\sin ^4}x = {\cos ^4}x \Leftrightarrow \left[ \begin{array}{l}\sin x = \cos x\\\sin x = - \cos x\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x = - 1\end{array} \right. \Leftrightarrow x = \pm \frac{\pi }{4} + k\pi \, = \frac{\pi }{4} + \frac{{k\pi }}{2}\,\left( {k \in \mathbb{Z}} \right)\end{array}\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm điều kiện cần và đủ của \(a,\,\,b,\,\,c\) để phương trình \(a\sin x + b\cos x = c\) có nghiệm?
Tìm giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực đại tại \(x = 0\)
Tập tất cả giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 3x + 1\) đồng biến trên \(\mathbb{R}\) là
Tính tổng \(T\) của các giá trị nguyên của tham số \(m\) để phương trình \({e^x} + \left( {{m^2} - m} \right){e^{ - x}} = 2m\) có đúng hai nghiệm phân biệt nhỏ hơn \(\frac{1}{{\log e}}.\)
Gọi \(l,h,\,r\) lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của một hình nón. Tính diện tích xung quanh \({S_{xq}}\) của hình nón đó theo \(l,h,\,r\).
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Mệnh đề nào sau đây SAI?
Hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Tìm số giá trị nguyên thuộc đoạn \(\left[ { - 2019;2019} \right]\) của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{\sqrt {x - 3} }}{{{x^2} + x - m}}\) có đúng hai đường tiệm cận.
Cho hình chóp \(S.ABCD\) có đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) , đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\) , có \(AB = a,\,AD = 2a,BC = a.\) Biết rằng \(SA = a\sqrt 2 .\) Tính thể tích \(V\) của khối chóp \(S.BCD\) theo \(a.\)
Cho hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2\cos x - 1}}{{{{\sin }^2}x}}\) trên khoảng \(\left( {0;\pi } \right).\) Biết rằng giá trị lớn nhất của \(F\left( x \right)\) trên khoảng \(\left( {0;\pi } \right)\) là \(\sqrt 3 \). Chọn mệnh đề đúng trong các mệnh đề sau?
Cho hình lập phương \(ABCD.A'B'C'D'.\) Biết tích của khoảng cách từ điểm \(B'\) và điểm \(D\) đến mặt phẳng \(\left( {D'AC} \right)\) bằng \(6{a^2}\left( {a > 0} \right)\) . Giả sử thể tích của khối lập phương \(ABCD.A'B'C'D'\) là \(k{a^3}.\) Chọn mệnh đề đúng trong các mệnh đề sau.
Tính giới hạn \(L = \lim \dfrac{{{n^3} - 2n}}{{3{n^2} + n - 2}}\).
Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = x - \sqrt {4 - {x^2}} \). Tính tổng \(M + m\).
Cho lăng trụ đứng tam giác \(ABC.A'B'C'\) . Gọi \(M,{\rm N},P,Q\) là các điểm lần lượt thuộc các cạnh \(AA',\,BB',CC',\,B'C'\) thỏa mãn \(\frac{{AM}}{{AA'}} = \frac{1}{2},\,\frac{{B{\rm N}}}{{BB'}} = \frac{1}{3},\,\frac{{CP}}{{CC'}} = \frac{1}{4},\,\,\frac{{C'Q}}{{C'B'}} = \frac{1}{5}\). Gọi \({V_1},\,{V_2}\) lần lượt là thể tích khối tứ diện \(MNPQ\) và khối lăng trụ \(ABC.A'B'C'.\) Tính tỷ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Tìm số hạng đầu \({u_1}\) của cấp số nhân \(\left( {{u_n}} \right)\) biết rằng \({u_1} + {u_2} + {u_3} = 168\) và \({u_4} + {u_5} + {u_6} = 21.\)