Lời giải của giáo viên
Đồ thị hàm số \(y = \frac{{3x + 2}}{{x + 2}}\) có 2 đường tiệm cận là \(\left( {{d_1}} \right):x = - 2\) và \(\left( {{d_2}} \right):y = 3\)
Gọi \(P\left( {a;\frac{{3a + 2}}{{a + 2}}} \right) \Rightarrow d\left( {P,{d_1}} \right) + d\left( {P,{d_2}} \right) = \left| {a + 2} \right| + \left| {\frac{{3a + 2}}{{a + 2}} - 3} \right| = \left| {a + 2} \right| + \frac{4}{{\left| {a + 2} \right|}} \ge 4\)
Dấu bằng khi \(\left| {a + 2} \right| = 2 \Leftrightarrow \left[ \begin{array}{l}
a = 0\\
a = - 4
\end{array} \right.\). Vậy các điểm P, Q là \(\left( {0;1} \right)\) là \(\left( { - 2;5} \right) \Rightarrow P{Q^2} = 20\).
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm \(m\) để hàm số \(y = {x^3} - 3{m^2}x\) đồng biến trên R
Cho hàm số \(y = \frac{{{x^4}}}{4} + {x^3} - 4x + 1\). Nhận xét nào sau đây là sai:
Cho hàm số \(y = \frac{{{x^2} + x + 2}}{{x - 2m - 1}}\) có đồ thị (1). Tìm \(m\) để đồ thị (1) có đường tiệm cận đứng trùng với đường thẳng \(x=3\)
Tìm m để giá trị nhỏ nhất của hàm số \(y = {x^3} + \left( {{m^2} + 1} \right)x + {m^2} - 2\) trên \(\left[ {0;2} \right]\) bằng 7
Hàm số \(y = {\sin ^4}x - {\cos ^4}x\) có đạo hàm là:
Tìm \(m\) để hàm số \(y = {x^3} - 3{m^2}x\) nghịch biến trên khoảng có độ dài bằng 2.
Phương trình tiếp tuyến với đồ thị \(y = {x^3} - 4{x^2} + 2\) tại điểm có hoành độ bằng 1 là:
Tìm m để hàm số \(y = {x^3} + 3{x^2} + 3mx - 1\) nghịch biến trên khoảng \(\left( {0; + \infty } \right)\)
Tìm điểm M thuộc đồ thị \(\left( C \right):y = {x^3} - 3{x^2} - 2\) biết hệ số góc của tiếp tuyến tại M bằng 9
Tìm \(m\) để hàm số \(y = m{x^3} + 3{x^2} + 12x + 2\) đạt cực đại tại \(x=2\)
Khoảng đồng biến của hàm số \(y = - {x^4} + 8{x^2} - 1\) là:
Điểm cực đại của đồ thị hàm số \(y = 2{x^3} - 3{x^2} - 2\) là:
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \frac{x}{{x - m}}\) nghịch biến trên nửa khoảng \(\left[ {1; + \infty } \right)\).
Gọi S là tập tất cả các giá trị thực của tham số \(m\) để đồ thị của hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 1} \right)x\) có hai điểm cực trị A và B sao cho A, B nằm khác phía và cách đều đường thẳng \(y = 5x - 9\). Tính tổng tất cả các phần tử của S.
Tìm \(m\) để hàm số \(y = \frac{{x - m}}{{x + 1}}\) đồng biến trên từng khoảng xác định của chúng.