Lời giải của giáo viên
Dựa vào hình vẽ ta thấy:
+ Hàm số \(y = \frac{{ax + b}}{{cx + d}}\) là hàm số nghịch biến trên từng khoảng xác định, suy ra \(y' < 0 \Leftrightarrow ad - bc < 0 \Leftrightarrow ad < bc\), loại đáp án C.
+ Đồ thị hàm số có đường TCĐ là đường thẳng: \(x = - \frac{d}{c} > 0 \Rightarrow cd < 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
+ Đồ thị hàm số có đường TCN là đường thẳng: \(y = \frac{a}{c} > 0 \Rightarrow ac > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)
Từ (1), (2) suy ra ad < 0 nên loại đáp án B.
+ Đồ thị hàm số giao với trục Ox tại điểm có hoành độ \(x = - \frac{b}{a} > 0 \Rightarrow ab < 0\,\,\,\left( 3 \right)\)
Từ (2), (3) suy ra bc < 0 nên loại đáp án D.
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi S là các tập hợp các giá trị nguyên của tham số m để giá trị lớn nhất của hàm số \(f\left( x \right) = \left| {{x^3} - 3mx + 8} \right|\) trên đoạn [0;3] bằng 8. Tổng các số nguyên m bằng
Cho số nguyên a, số thực b. Gọi S là tập hợp các giá trị nguyên của a để tồn tại số thực x thỏa mãn \(x + a = {4^b}\) và \(\sqrt {x - 2} + \sqrt {a + 2} = {3^b}\). Tổng các phần tử của tập S là
Gọi S là tập hợp các hoành độ giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 3\) và đường thẳng y = 1. Tổng các phần tử của S là
Số giá trị nguyên của tham số m để hàm số \(y = \frac{{mx - 4}}{{x - m}}\) đồng biến trên khoảng (0;2) là
Cho hàm số y = f(x) xác định, liên tục trên R và có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình \(2f\left( {3 - 4\sqrt {6x - 9{x^2}} } \right) = m - 3\) có nghiệm?
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, mặt bên SAB là tam giác vuông cân tại đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách h giữa hai đường thẳng SB và AC.
Cho x và y là những số thực không âm thỏa mãn \({x^2} + 2x + \frac{{{y^2}}}{2} - 3 = {\log _2}\frac{{\sqrt {9 - {y^2}} }}{{x + 1}}\).
Giá trị lớn nhất của biểu thức T = x + y thuộc tập nào dưới đây ?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + z = 0\) và đường thẳng \(d:\frac{{x + 1}}{4} = \frac{{y + 1}}{3} = \frac{{z - 2}}{{ - 1}}\). Tọa độ giao điểm của (P) và d là điểm nào dưới đây?
Trong không gian Oxyz, mặt cầu (S) có tâm I(-1;4;2) và có bán kính R = 5 có phương trình là:
Cho hình chóp S.ABC biết \(SA \bot \left( {ABC} \right)\), SA = a. Tam giác ABC là tam giác đều cạnh bằng a. M là trung điểm của BC. Khoảng cách giữa hai đường thẳng SM và AB bằng
Tổng tất cả các giá trị của tham số m để phương trình \({25^x} - \left( {m + 1} \right){.5^x} + m = 0\) có hai nghiệm thực phân biệt x1, x2 thỏa mãn \(x_1^2 + x_2^2 = 4\) bằng:
Thầy giáo tặng hết 5 quyển sách tham khảo khác nhau cho ba học sinh giỏi luyện tập. Số cách tặng để mỗi học sinh nhận được ít nhất một quyển sách là
Cho hàm số y = f(x) liên tục trên R và có đạo hàm \(f'\left( x \right) = \left( {x - 1} \right){\left( {x - 2} \right)^2}{\left( {x - 5} \right)^3}\). Số điểm cực trị của hàm số y = f(x) là
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}\) (minh họa như hình vẽ). M là trung điểm của BC, góc giữa đường thẳng A'M và mặt phẳng (ABC) bằng
Cho hàm số y = f(x) có bảng biến thiên dưới đây.
Giá trị cực đại của hàm số đã cho bằng bao nhiêu?