Lời giải của giáo viên
\(g'\left( x \right) = \left[ {f\left[ {f\left( x \right)} \right]} \right]' = f'\left[ {f\left( x \right)} \right].f'\left( x \right) \Leftrightarrow \left[ \begin{array}{l} f'\left[ {f\left( x \right)} \right] = 0\\ f'\left( x \right) = 0 \end{array} \right.\)
Do đồ thị hàm số y = f(x) có 2 điểm cực trị nên f'(x) = 0 có 2 nghiệm
Lại có \(f'\left[ {f\left( x \right)} \right] = 0 \Leftrightarrow \left[ \begin{array}{l} f\left( x \right) = 0\\ f\left( x \right) \approx \frac{5}{2} \end{array} \right.\) trong đó f(x) = 0 có 3 nghiệm và \(f(x) \approx \frac{5}{2}\) có 3 nghiệm
Vậy phương trình g'(x) = 0 có 8 nghiệm phân biệt
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) có \(f\left( {\frac{\pi }{2}} \right) = 0\) và \(f'(x) = sinx.si{n^2}2x,\forall x \in R\). Khi đó \(\int\limits_0^{\frac{\pi }{2}} {f(x)dx} \) bằng
Cho hàm số \(y = \frac{{ax + b}}{{x + c}}\) có đồ thị như hình vẽ a, b, c là các số nguyên. Giá trị của biểu thức T = a - 3b + 2c bằng:
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(3;1;-1) trên trục Oy có tọa độ là
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Cho phương trình \(lo{g_9}{x^2} - {\log _3}\left( {3x - 1} \right) = - {\log _3}m\). Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình đã cho có nghiệm?
Cho hình hộp ABCD.A'B'C'D' thể tích là V. Tính thể tích của tứ diện ACB'D' theo V.
Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường \(y = {x^{\frac{1}{2}}}.{e^{\frac{x}{2}}}\), x = 1, x = 2, y = 0 quanh trục Ox được tính bởi biểu thức nào sau đây?
Cho hàm số bậc ba \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình sau:
Đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} - 3x + 2} \right)\sqrt {x - 1} }}{{x\left[ {{f^2}\left( x \right) - f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?
Cho hình nón có đường sinh bằng 3, diện tích xung quanh bằng \(12\pi\). Bán kính đáy của hình nón là:
Hình dưới đây là đồ thị của hàm số \(f\left( x \right) = a{x^3} + bx + c\).
Khẳng định nào dưới đây là đúng?
Cho hàm số y = f(x) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
Cho hình trụ có chiều cao bằng \(4\sqrt 2 \). Cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng \(\sqrt2\), thiết diện thu được có diện tích bằng 16. Diện tích xung quanh của hình trụ đã cho bằng
Trong không gian Oxyz, cho hai điểm M(1;0;1) và N(3;2;-1). Đường thẳng MN có phương trình chính tắc là