Cho hàm số \(y = \left| {\frac{{x + 1}}{{x - 3}}} \right|\) có đồ thị là (C) . Khẳng định nào sau đây là sai?
A. Đồ thị (C) cắt đường tiệm cận ngang của nó tại một điểm.
B. Hàm số đồng biến trên khoảng (1 ; 2).
C. Đồ thị (C) có 3 đường tiệm cận.
D. Hàm số có một điểm cực trị.
Lời giải của giáo viên
TXĐ: D = R \ {3}
Xét hàm số \(y = \frac{{x + 1}}{{x - 3}}\) có \(y' = \frac{{ - 4}}{{{{\left( {x - 3} \right)}^2}}} < 0{\rm{ }}\forall x \in D\)
Đồ thị hàm số \(y = \left| {\frac{{x + 1}}{{x - 3}}} \right|\) được vẽ như sau:
+) Vẽ đồ thị hàm số \(y = \frac{{x + 1}}{{x - 3}}\)
+) Lấy đối xứng toàn bộ phần đồ thị nằm dưới trục Ox qua trục Ox.
+) Xóa đi phần đồ thị phía dưới trục Ox.
Do đó ta vẽ được đồ thị hàm số \(y = \left| {\frac{{x + 1}}{{x - 3}}} \right|\) như sau:
Dựa vào đồ thị hàm số ta thấy đồ thị hàm số có 2 đường tiệm cận là x = 3 và y = -1.
Đồ thị (C) cắt đường tiệm cận ngang của nó tại 1 điểm.
Hàm số đồng biến trên (1; 2) và hàm số có một điểm cực trị x = -1
Vậy khẳng định sai là đáp án C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB// CD), BC = 2a,AB = AD = DC = a với a > 0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x > 0; M khác O và D. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với hai đường thẳng SD và AC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?
Cho biết \({9^x} - {12^2} = 0\) , tính giá trị biểu thức \(P = \frac{1}{{{3^{ - x - 1}}}} - {8.9^{\frac{{x - 1}}{2}}} + 19\)
Trong các lăng trụ sau, lăng trụ nào không nội tiếp được trong một mặt cầu?
Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính R = 6cm. I, K là 2 điểm trên đoạn OA sao cho OI = IK = KA . Các mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) lần lượt qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính \({r_1},{r_2}\). Tính tỉ số \(\frac{{{r_1}}}{{{r_2}}}\)
Cho biết \({\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}}\), khẳng định nào sau đây Đúng?
Tìm tập xác định D của hàm số \(y = {\left( {5 + 4x - {x^2}} \right)^{\sqrt {2019} }}\)
Cho hình trụ có bán kính đáy R và độ dài đường sinh là l. Thể tích khối trụ là:
Trong tất cả các hình thang cân có cạnh bên bằng 2 và cạnh đáy nhỏ bằng 4, tính chu vi P của hình thang có diện tích lớn nhất.
Cho hàm số y = f(x) có đạo hàm trên (a; b). Phát biểu nào sau đây sai?
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \({\left( {\sqrt[3]{3} + \sqrt[5]{5}} \right)^{2019}}\)
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = x,AD = 1 . Biết rằng góc giữa đường thẳng A'C và mặt phẳng \(\left( {ABB'A'} \right)\) bằng 30°. Tìm giá trị lớn nhất \({V_{\max }}\) của thể tích khối hộp ABCD.A'B'C'D'
Tìm tất cả các giá trị của tham số m để phương trình \(\log _3^23x + {\log _3}x + m - 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng (0; 1)