Lời giải của giáo viên
Trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\), hàm số \(y = \sin \,x\)đồng biến.
Đặt \(t = \sin x,\,\,x \in \left( {0;\dfrac{\pi }{2}} \right) \Rightarrow t \in \left( {0;1} \right)\) .
Khi đó, hàm số\(y = \left| {{{\sin }^3}x - m.\sin \,x + 1} \right|\) đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\) khi và chỉ khi \(y = f\left( t \right) = \left| {{t^3} - mt + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\).
Xét hàm số \(y = f\left( t \right) = {t^3} - mt + 1\) trên khoảng \(\left( {0;1} \right)\), có :\(f'\left( t \right) = 3{t^2} - m\)
+) Khi \(m = 0\): \(f'\left( x \right) = 3{x^2} \ge 0,\,\,\forall x\)\( \Rightarrow y = f\left( x \right) = {x^3} + 1\) đồng biến trên \(\left( {0;1} \right)\)
Và đồ thị hàm số \(y = f\left( x \right) = {x^3} + 1\) cắt Ox tại điểm duy nhất là \(x = - 1 \in \left( {0;1} \right)\)
\( \Rightarrow \)\(y = g\left( x \right) = \left| {{x^3} - m\,x + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\) \( \Rightarrow m = 0\): thỏa mãn.
+) \(m > 0\): \(f'\left( x \right) = 0\) có 2 nghiệm phân biệt \({x_1} = - \sqrt {\dfrac{m}{3}} ,\,\,{x_2} = \sqrt {\dfrac{m}{3}} \)
Hàm số \(y = f\left( x \right) = {x^3} - m\,x + 1\) đồng biến trên các khoảng \(\left( { - \infty ; - \sqrt {\dfrac{m}{3}} } \right)\) và \(\left( {\sqrt {\dfrac{m}{3}} ; + \infty } \right)\)
Nhận xét: \(\left( {0;1} \right) \not\subset \left( {\sqrt {\dfrac{m}{3}} ; + \infty } \right)\) , \(\left( {0;1} \right) \not\subset \left( { - \infty ; - \sqrt {\dfrac{m}{3}} } \right)\) , \(\forall m > 0\)
TH1: \( - \sqrt {\dfrac{m}{3}} < 0 < \sqrt {\dfrac{m}{3}} < 1 \Leftrightarrow 0 < m < 3\)
Để \(y = g\left( x \right) = \left| {{x^3} - m\,x + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\) thì \({x^3} - m\,x + 1 = 0\) có nghiệm (bội lẻ) là \(x = \sqrt {\dfrac{m}{3}} \)
\( \Rightarrow \dfrac{{m\sqrt m }}{{3\sqrt 3 }} - \dfrac{{m\sqrt m }}{{\sqrt 3 }} + 1 = 0 \Leftrightarrow - 2m\sqrt m + 3\sqrt 3 = 0 \Leftrightarrow m\sqrt m = \dfrac{{3\sqrt 3 }}{2} \Leftrightarrow m = \dfrac{3}{{\sqrt[3]{4}}}\) (thỏa mãn)
TH2: \( - \sqrt {\dfrac{m}{3}} < 0 < 1 \le \sqrt {\dfrac{m}{3}} \Leftrightarrow m \ge 3\)
Để \(y = g\left( x \right) = \left| {{x^3} - m\,x + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\) thì \({x^3} - m\,x + 1 \le 0,\,\,\forall x \in \left( {0;1} \right)\)
\( \Leftrightarrow mx \le {x^3} + 1,\,\,\forall x \in \left( {0;1} \right) \Leftrightarrow m \le {x^2} + \dfrac{1}{x},\,\,\forall x \in \left( {0;1} \right)\)
Xét hàm số \(y = {x^2} + \dfrac{1}{x},\,\,x \in \left( {0;1} \right)\, \Rightarrow y' = 2x - \dfrac{1}{{{x^2}}}\); \(y' = 0 \Leftrightarrow x = \dfrac{1}{{\sqrt[3]{2}}} \in \left( {0;1} \right)\)
Hàm số liên tục trên \(\left( {0;1} \right)\) và \(y\left( {\dfrac{1}{{\sqrt[3]{2}}}} \right) = \dfrac{3}{{\sqrt[3]{4}}};\,\,\,y\left( 1 \right) = 2;\,\,\mathop {\lim }\limits_{x \to {0^ + }} y = \, + \infty \, \Rightarrow \mathop {\min }\limits_{\left( {0;1} \right)} y = \dfrac{3}{{\sqrt[3]{4}}}\)
Để \(m \le {x^2} + \dfrac{1}{x},\,\,\forall x \in \left( {0;1} \right)\) thì \(m \le \dfrac{3}{{\sqrt[3]{4}}} \Rightarrow \)Không có giá trị của m thỏa mãn.
Vậy, chỉ có giá trị \(m = 0\) thỏa mãn.
Chọn: A
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tích của khối lập phương ABCD.A’B’C’D’ cạnh a.
Đạo hàm của hàm số \(y = \sin \,x + {\log _3}{x^3}\,\,\left( {x > 0} \right)\) là
Cho \({\log _3}x = 3{\log _3}2\). Khi đó giá trị của x là
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có \(f\left( 1 \right) = 1,\,\,f\left( { - 1} \right) = - \dfrac{1}{3}\). Đặt \(g\left( x \right) = {f^2}\left( x \right) - 4f\left( x \right)\). Cho biết đồ thị của \(y = f'\left( x \right)\) có dạng như hình vẽ dưới đây.
Mệnh đề nào sau đây đúng?
Tích \(\dfrac{1}{{2019!}}{\left( {1 - \dfrac{1}{2}} \right)^1}.{\left( {1 - \dfrac{1}{3}} \right)^2}.{\left( {1 - \dfrac{1}{4}} \right)^3}...{\left( {1 - \dfrac{1}{{2019}}} \right)^{2018}}\) được viết dưới dạng \({a^b}\), khi đó \(\left( {a;b} \right)\) là cặp nào trong các cặp sau?
Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh bằng \(4\pi \). Thể tích khối trụ là
Cho hình chóp \(S.\,ABC\) có \(AB = AC = 4,\,BC = 2,\,SA = 4\sqrt 3 \), . Tính thể tích khối chóp \(S.\,ABC.\)
Hỏi có bao nhiêu giá trị m nguyên trong \(\left[ { - 2017;2017} \right]\) để phương trình \(\log \left( {mx} \right) = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 2019;2019} \right]\) để đồ thị hàm số \(y = \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:
Đầu năm 2016, Curtis Cooper và các cộng sự tại nhóm nghiên cứu Đại học Central Mis-souri, Mỹ công bố số nguyên tố lớn nhất tại thời điểm đó. Số nguyên tố này là một dạng Mersenne, có giá trị bằng \(M = {2^{74207281}} - 1\). Hỏi M có bao nhiêu chữ số?
Tính thể tích V của khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao \(h = 4\).
Tìm tọa độ điểm M trên trục Ox cách đều hai điểm \(A\left( {1;2; - 1} \right)\) và điểm \(B\left( {2;1;2} \right)\).
Xét một bảng ô vuông gồm \(4 \times 4\) ô vuông. Người ta điền vào mỗi ô vuông một trong hai số 1 hoặc -1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách điền số?
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 2} \right)\left( {{x^2} - 6x + m} \right)\) với mọi \(x \in \mathbb{R}\). Có bao nhiêu số nguyên \(m\) thuộc đoạn \(\left[ { - 2019;\,2019} \right]\) để hàm số \(g\left( x \right) = f\left( {1 - x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ;\, - 1} \right)\)?