Tìm tọa độ điểm M trên trục Ox cách đều hai điểm \(A\left( {1;2; - 1} \right)\) và điểm \(B\left( {2;1;2} \right)\).
A. \(M\left( {\dfrac{1}{2};0;0} \right)\).
B. \(M\left( {\dfrac{3}{2};0;0} \right)\).
C. \(M\left( {\dfrac{2}{3};0;0} \right)\).
D. \(M\left( {\dfrac{1}{3};0;0} \right)\).
Lời giải của giáo viên
\(M \in Ox \Rightarrow M\left( {m;0;0} \right)\)
Theo đề bài, ta có:
\(\begin{array}{l}MA = MB \Leftrightarrow M{A^2} = M{B^2}\\ \Leftrightarrow {\left( {m - 1} \right)^2} + {2^2} + {1^2} = {\left( {m - 2} \right)^2} + {1^2} + {2^2} \Leftrightarrow {\left( {m - 1} \right)^2} = {\left( {m - 2} \right)^2}\\ \Leftrightarrow \left[ \begin{array}{l}m - 1 = m - 2\,\,\left( {Vo\,\,nghiem} \right)\\m - 1 = 2 - m\end{array} \right. \Leftrightarrow m = \dfrac{3}{2} \Rightarrow M\left( {\dfrac{3}{2};0;0} \right)\end{array}\)
Chọn: B
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tích của khối lập phương ABCD.A’B’C’D’ cạnh a.
Đạo hàm của hàm số \(y = \sin \,x + {\log _3}{x^3}\,\,\left( {x > 0} \right)\) là
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có \(f\left( 1 \right) = 1,\,\,f\left( { - 1} \right) = - \dfrac{1}{3}\). Đặt \(g\left( x \right) = {f^2}\left( x \right) - 4f\left( x \right)\). Cho biết đồ thị của \(y = f'\left( x \right)\) có dạng như hình vẽ dưới đây.
Mệnh đề nào sau đây đúng?
Cho \({\log _3}x = 3{\log _3}2\). Khi đó giá trị của x là
Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh bằng \(4\pi \). Thể tích khối trụ là
Tích \(\dfrac{1}{{2019!}}{\left( {1 - \dfrac{1}{2}} \right)^1}.{\left( {1 - \dfrac{1}{3}} \right)^2}.{\left( {1 - \dfrac{1}{4}} \right)^3}...{\left( {1 - \dfrac{1}{{2019}}} \right)^{2018}}\) được viết dưới dạng \({a^b}\), khi đó \(\left( {a;b} \right)\) là cặp nào trong các cặp sau?
Hỏi có bao nhiêu giá trị m nguyên trong \(\left[ { - 2017;2017} \right]\) để phương trình \(\log \left( {mx} \right) = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?
Cho hình chóp \(S.\,ABC\) có \(AB = AC = 4,\,BC = 2,\,SA = 4\sqrt 3 \), . Tính thể tích khối chóp \(S.\,ABC.\)
Cho hàm số \(y = \left| {{{\sin }^3}x - m.\sin \,x + 1} \right|\). Gọi S là tập hợp tất cả các số tự nhiên m sao cho hàm số đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\). Tính số phần tử của S?
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:
Đầu năm 2016, Curtis Cooper và các cộng sự tại nhóm nghiên cứu Đại học Central Mis-souri, Mỹ công bố số nguyên tố lớn nhất tại thời điểm đó. Số nguyên tố này là một dạng Mersenne, có giá trị bằng \(M = {2^{74207281}} - 1\). Hỏi M có bao nhiêu chữ số?
Xét một bảng ô vuông gồm \(4 \times 4\) ô vuông. Người ta điền vào mỗi ô vuông một trong hai số 1 hoặc -1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách điền số?
Hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + 2\) đạt cực tiểu tại điểm \(x = 1\) và \(f\left( 1 \right) = - 3\). Tính \(b + 2a\).
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 2019;2019} \right]\) để đồ thị hàm số \(y = \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 2} \right)\left( {{x^2} - 6x + m} \right)\) với mọi \(x \in \mathbb{R}\). Có bao nhiêu số nguyên \(m\) thuộc đoạn \(\left[ { - 2019;\,2019} \right]\) để hàm số \(g\left( x \right) = f\left( {1 - x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ;\, - 1} \right)\)?