Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Tiên Lãng
Đề thi thử THPT QG năm 2022 môn Toán
-
Hocon247
-
50 câu hỏi
-
90 phút
-
63 lượt thi
-
Dễ
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Nếu \(\int {f\left( x \right)} dx = \dfrac{{{x^3}}}{3} + {e^x} + C\) thì \(f\left( x \right)\) bằng
\(\int {f\left( x \right)} dx = \dfrac{{{x^3}}}{3} + {e^x} + C \Rightarrow f\left( x \right) = {x^2} + {e^x}\).
Chọn: C
Có bao nhiêu giá trị x thỏa mãn \({5^{{x^2}}} = {5^x}\)?
Ta có: \({5^{{x^2}}} = {5^x} \Leftrightarrow {x^2} = x \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).
Chọn: D
Đường cong trong hình bên là đồ thị của một trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Quan sát đồ thị ta thấy: Đồ thị hàm số đi qua điểm \(O\left( {0;0} \right)\).
Chọn: B
Với giá trị nào của x thì biểu thức \({\left( {4 - {x^2}} \right)^{\frac{1}{3}}}\) sau có nghĩa
ĐKXĐ: \(4 - {x^2} > 0 \Leftrightarrow - 2 < x < 2\).
Chọn: C
Đường cong trong hình bên là đồ thị của một trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Hàm số đồng biến trên \(\left( {0; + \infty } \right) \Rightarrow \)Loại phương án C
Đồ thị hàm số đi qua điểm \(\left( {\dfrac{1}{2}; - 1} \right) \Rightarrow \) Chọn phương án B , do \( - 1 \ne {\log _2}\left( {2.\dfrac{1}{2}} \right);\,\,\,\, - 1 = {\log _2}\dfrac{1}{2}\) và \( - 1 \ne {\log _{\sqrt 2 }}\dfrac{1}{2}\)
Chọn: B
Có bao nhiêu điểm thuộc đồ thị \(\left( C \right)\) của hàm số \(y = \dfrac{2}{{{x^2} + 2x + 2}}\) có hoành độ và tung độ đều là số nguyên?
Ta có: \(y = \dfrac{2}{{{x^2} + 2x + 2}} = \dfrac{2}{{{{\left( {x + 1} \right)}^2} + 1}}\)
Mà \(0 < \dfrac{2}{{{{\left( {x + 1} \right)}^2} + 1}} \le 2,\,\,do{\left( {x + 1} \right)^2} \ge 0 \Rightarrow y \in \left\{ {1;2} \right\}\)
Với \(y = 1 \Rightarrow \dfrac{2}{{{x^2} + 2x + 2}} = 1 \Leftrightarrow {x^2} + 2x + 2 = 2 \Leftrightarrow {x^2} + 2x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2\end{array} \right. \Rightarrow \) Các điểm \(\left( { - 2;1} \right),\,\,\left( {0;1} \right)\) thỏa mãn.
Với \(y = 2 \Rightarrow \dfrac{2}{{{x^2} + 2x + 2}} = 2 \Leftrightarrow {x^2} + 2x + 2 = 1 \Leftrightarrow {x^2} + 2x + 1 = 0 \Leftrightarrow x = - 1 \Rightarrow \) Điểm \(\left( { - 1;2} \right)\) thỏa mãn.
Vậy, đồ thị \(\left( C \right)\) có 3 điểm có hoành độ và tung độ đều là số nguyên.
Chọn: D
Xét một bảng ô vuông gồm \(4 \times 4\) ô vuông. Người ta điền vào mỗi ô vuông một trong hai số 1 hoặc -1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách điền số?
Nhận xét:
Để tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0 thì số lượng số 1 và số lượng số -1 trong mỗi hàng và mỗi cột đều là 2.
\( \Leftrightarrow \) Mỗi hàng và mỗi cột đều có đúng 2 số 1.
- Chọn 2 ô ở cột 1 để đặt số 1, ta có: \(C_4^2 = 6\) (cách)
Ví dụ:
- Ở mỗi hàng mà chứa 2 ô vừa được chọn, ta chọn đúng 1 ô để đặt số 1, khi đó có 2 trường hợp:
TH1: 2 ô được chọn ở cùng một hàng: có \(C_3^1 = 3\) (cách)
Ví dụ:
Khi đó, ở 2 hàng còn lại có duy nhất cách đặt số 1 vào 4 ô : không cùng hàng và cột với các ô đã điền.
Như hình vẽ sau:
TH2: 2 ô được chọn khác hàng: có: \(3.2 = 6\) (cách)
Ví dụ:
Khi đó, số cách đặt 4 số 1 còn lại là: \(1.1.2! = 2\) (cách), trong đó, 2 số 1 để vào đúng 2 ô còn lại của cột chưa điền, 2 số 1 còn lại hoàn vị vào 2 ô ở 2 cột vừa điền ở bước trước.
Ví dụ:
Vậy, số cách xếp là: \(6.\left( {3.1 + 6.2} \right) = 6.15 = 90\) (cách).
Chọn: B
Hỏi có bao nhiêu giá trị m nguyên trong \(\left[ { - 2017;2017} \right]\) để phương trình \(\log \left( {mx} \right) = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?
\(\log \left( {mx} \right) = 2\log \left( {x + 1} \right) \Leftrightarrow \left\{ \begin{array}{l}x > - 1\\mx = {\left( {x + 1} \right)^2}\end{array} \right.\) (I)
Ta thấy \(x = 0\) không phải nghiệm của, khi đó \((I) \Leftrightarrow \) \(\left\{ \begin{array}{l}x > - 1\\m = \dfrac{{{{\left( {x + 1} \right)}^2}}}{x} = x + \dfrac{1}{x} + 2\end{array} \right.\) (II)
Xét hàm số \(f\left( x \right) = x + \dfrac{1}{x} + 2,\,\,\,x \in \left( { - 1; + \infty } \right){\rm{\backslash }}\left\{ 0 \right\}\) có \(f'\left( x \right) = 1 - \dfrac{1}{{{x^2}}}\)
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1(L)\end{array} \right.\)
Bảng biến thiên:
Dựa vào bảng biên thiên, ta có: phương trình đã cho có 1 nghiệm duy nhất \( \Leftrightarrow \left[ \begin{array}{l}m < 0\\m = 4\end{array} \right.\)
Mà \(m \in \mathbb{Z},\,\,m \in \left[ { - 2017;2017} \right] \Rightarrow m \in \left\{ { - 2017; - 2016;...; - 1} \right\} \cup \left\{ 4 \right\}\): Có 2018 giá trị của m thỏa mãn.
Chọn: D
Đạo hàm của hàm số \(y = \sin \,x + {\log _3}{x^3}\,\,\left( {x > 0} \right)\) là
\(y = \sin \,x + {\log _3}{x^3}\,\, = \sin \,x + 3{\log _3}x\,\,\left( {x > 0} \right)\,\,\, \Rightarrow y' = \cos x + \dfrac{3}{{x\ln 3}}\).
Chọn: A
Nguyên hàm của hàm số \(f\left( x \right) = {x^{2019}}\), \(\left( {x \in \mathbb{R}} \right)\) là hàm số nào trong các hàm số dưới đây?
\(\int {f\left( x \right)dx} = \int {{x^{2019}}} dx = \dfrac{{{x^{2020}}}}{{2020}} + C\).
Chọn: C
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm O cạnh a, SO vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SO = a\). Khoảng cách giữa \(SC\) và \(AB\) bằng
Ta có: \(\left\{ \begin{array}{l}AB//CD\\CD \subset \left( {SCD} \right)\\AB \not\subset \left( {SCD} \right)\end{array} \right.\,\, \Rightarrow AB//\left( {SCD} \right)\,\).
Mà \(SC \subset \left( {SCD} \right)\,\, \Rightarrow d\left( {AB;SC} \right) = d\left( {AB;\left( {SCD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right)\)
Do \(O\) là trung điểm của AC,
\( \Rightarrow \dfrac{{d\left( {A;\left( {SCD} \right)} \right)}}{{d\left( {O;\left( {SCD} \right)} \right)}} = \dfrac{{AC}}{{OC}} = 2 \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = 2d\left( {O;\left( {SCD} \right)} \right)\)
Gọi I là trung điểm của CD. Dựng \(OH \bot SI,\,\,H \in SI\) (1)
Ta có: \(\left\{ \begin{array}{l}CD \bot OI\\CD \bot SO\end{array} \right.\,\, \Rightarrow CD \bot \left( {SOI} \right) \Rightarrow CD \bot OH\) (2)
Từ (1), (2), suy ra \(OH \bot \left( {SCD} \right)\, \Rightarrow d\left( {O;\left( {SCD} \right)} \right) = OH\)
\(\Delta SOI\)vuông tại O, \(OH \bot SI \Rightarrow \dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{I^2}}} + \dfrac{1}{{S{O^2}}} = \dfrac{1}{{{{\left( {\dfrac{a}{2}} \right)}^2}}} + \dfrac{1}{{{a^2}}} = \dfrac{5}{{{a^2}}} \Rightarrow OH = \dfrac{{a\sqrt 5 }}{5}\)
\( \Rightarrow d\left( {AB;CD} \right) = \dfrac{{2a\sqrt 5 }}{5}\).
Chọn: C
Trong không gian với hệ tọa độ \(Oxyz\), cho \(A\left( { - 3;0;0} \right),\,B\left( {0;0;3} \right),C\left( {0; - 3;0} \right)\). Điểm \(M\left( {a;b;c} \right)\) nằm trên mặt phẳng \(Oxy\) sao cho \(M{A^2} + M{B^2} - M{C^2}\) nhỏ nhất. Tính \({a^2} + {b^2} - {c^2}\).
\(A\left( { - 3;0;0} \right),\,B\left( {0;0;3} \right),C\left( {0; - 3;0} \right)\)
+) Xác định điểm \(I\) thỏa mãn \(\overrightarrow {IA} + \overrightarrow {IB} - \overrightarrow {IC} = \overrightarrow 0 \):
\(\overrightarrow {IA} + \overrightarrow {IB} - \overrightarrow {IC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {IA} = \overrightarrow {BC} \Leftrightarrow \left\{ \begin{array}{l} - 3 - {x_I} = 0 - 0\\0 - {y_I} = - 3 - 0\\0 - {z_I} = 0 - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_I} = - 3\\{y_I} = 3\\{z_I} = 3\end{array} \right. \Rightarrow I\left( { - 3;3;3} \right)\)
+) Khi đó, \(M{A^2} + M{B^2} - M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} - {\overrightarrow {MC} ^2} = {\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + {\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} - {\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)^2}\)
\( = M{I^2} + 2\overrightarrow {MI} .\left( {\overrightarrow {IA} + \overrightarrow {IB} - \overrightarrow {IC} } \right) + I{A^2} + I{B^2} - I{C^2} = M{I^2} + I{A^2} + I{B^2} - I{C^2}\)
\(M{A^2} + M{B^2} - M{C^2}\) nhỏ nhất khi và chỉ khi \(MI\) ngắn nhất\( \Leftrightarrow M\) là hình chiếu vuông góc của I lên \(\left( {Oxy} \right)\).
\( \Leftrightarrow M\left( { - 3;3;0} \right)\)\( \Rightarrow {a^2} + {b^2} - {c^2} = {\left( { - 3} \right)^2} + {3^2} - 0 = 18\).
Chọn: A
Hàm số \(y = \dfrac{{{x^3}}}{3} - 3{x^2} + 5x + 2019\) nghịch biến trên khoảng nào trong các khoảng dưới đây?
\(y = \dfrac{{{x^3}}}{3} - 3{x^2} + 5x + 2019 \Rightarrow y' = {x^2} - 6x + 5\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 5\end{array} \right.\)
Hàm số \(y = \dfrac{{{x^3}}}{3} - 3{x^2} + 5x + 2019\) nghịch biến \(\left( {1;5} \right)\)
Chọn: D
Hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + 2\) đạt cực tiểu tại điểm \(x = 1\) và \(f\left( 1 \right) = - 3\). Tính \(b + 2a\).
Hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + 2\) đạt cực tiểu tại điểm \(x = 1\) và \(f\left( 1 \right) = - 3\)
\( \Leftrightarrow \left\{ \begin{array}{l}3 + 2a + b = 0\\6 + 2a > 0\\1 + a + b + 2 = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2a + b = - 3\\a + b = - 6\\a > - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 9\\a > - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 9\end{array} \right.\) \( \Rightarrow b + 2a = - 9 + 2.3 = - 3\).
Chọn: D
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:
Hình lập phương \(ABCD.A'B'C'D'\) ,cạnh bằng a có bán kính mặt cầu ngoại tiếp \(R = \dfrac{{AC'}}{2} = \dfrac{{a\sqrt 3 }}{2}\)
Diện tích mặt cầu đó là: \(S = 4.\pi .{\left( {\dfrac{{a\sqrt 3 }}{2}} \right)^2} = 3\pi {a^2}\).
Chọn: C
Trong không gian với hệ tọa độ \(Oxyz\), biết rằng tập hợp tất cả các điểm \(M\left( {x;y;z} \right)\) sao cho \(\left| x \right| + \left| y \right| + \left| z \right| = 3\) là một hình đa diện. Tính thể tích V của khối đa diện đó.
Tập hợp tất cả các điểm \(M\left( {x;y;z} \right)\) sao cho \(\left| x \right| + \left| y \right| + \left| z \right| = 3\) là hình bát diện đều SABCDS’ (như hình vẽ)
Thể tích V của khối đa diện đó :
\(V = 2.{V_{S.ABCD}} = 2.\dfrac{1}{3}.SO.{S_{ABCD}}\)
\(ABCD\) là hình vuông có cạnh \(BC = OB.\sqrt 2 = 3\sqrt 2 \)
\( \Rightarrow {S_{ABCD}} = {\left( {3\sqrt 2 } \right)^2} = 18\)
\( \Rightarrow V = 2.\dfrac{1}{3}.3.18 = 36\).
Chọn: B
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = 27 + \cos x\) và \(f\left( 0 \right) = 2019\). Mệnh đề nào dưới đây đúng?
\(f'\left( x \right) = 27 + \cos x \Rightarrow \int {f'\left( x \right)} dx = \int {\left( {27 + \cos x} \right)} dx \Rightarrow f\left( x \right) = 27x + \sin \,x + C\)
Mà \(f\left( 0 \right) = 2019\)\( \Rightarrow 27.0 + \sin 0 + C = 2019 \Leftrightarrow C = 2019\)\( \Rightarrow f\left( x \right) = 27x + \sin \,x + 2019\).
Chọn: C
Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh bằng \(4\pi \). Thể tích khối trụ là
\(ABB'A'\) là hình vuông \( \Rightarrow h = 2r\)
Diện tích xung quanh của hình trụ : \({S_{xq}} = 2\pi rh = 2\pi r.2r = 4\pi {r^2} = 4\pi \,\, \Rightarrow r = 1 \Rightarrow h = 2\)
Thể tích khối trụ: \(V = \pi {r^2}h = \pi {.1^2}.2 = 2\pi \).
Chọn: B
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = - {x^3} + 2{x^2}\) song song với đường thẳng \(y = x\)?
Gọi \(d\) là tiếp tuyến cần tìm, \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm. Ta có: \(y = - {x^3} + 2{x^2} \Rightarrow y' = - 3{x^2} + 4x\)
Do d song song với đường thẳng \(y = x\)\( \Rightarrow y'\left( {{x_0}} \right) = 1 \Leftrightarrow - 3x_0^2 + 4{x_0} = 1 \Leftrightarrow 3x_0^2 - 4{x_0} + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} = \dfrac{1}{3}\end{array} \right.\)
+) \({x_0} = 1 \Rightarrow {y_0} = 1 \Rightarrow \)Phương trình đường thẳng d là: \(y = 1.\left( {x - 1} \right) + 1 \Leftrightarrow y = x\): Loại
+) \({x_0} = \dfrac{1}{3} \Rightarrow {y_0} = \dfrac{5}{{27}} \Rightarrow \)Phương trình đường thẳng d là: \(y = 1.\left( {x - \dfrac{1}{3}} \right) + \dfrac{5}{{27}} \Leftrightarrow y = x - \dfrac{4}{{27}}\): Thỏa mãn
Vậy, có 1 tiếp tuyến của đồ thị hàm số \(y = - {x^3} + 2{x^2}\) song song với đường thẳng \(y = x\).
Chọn: D
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của m để phương trình \(f\left( {2 - \sqrt {2x - {x^2}} } \right) = m\) có nghiệm?
Xét hàm số \(t\left( x \right) = 2 - \sqrt {2x - {x^2}} ,\,\,x \in \left[ {0;2} \right]\), có \(t'\left( x \right) = \dfrac{{x - 1}}{{\sqrt {2x - {x^2}} }};\,\,t'\left( x \right) = 0 \Leftrightarrow x = 1\)
Hàm số \(t\left( x \right)\) liên tục trên \(\left[ {0;2} \right]\) có \(t\left( 0 \right) = t\left( 2 \right) = 2,\,\,t\left( 1 \right) = 1 \Rightarrow \mathop {\min }\limits_{\left[ {0;2} \right]} t\left( x \right) = 1,\,\,\mathop {\max }\limits_{\left[ {0;2} \right]} t\left( x \right) = 2\)
\(x \in \left[ {0;2} \right] \Rightarrow t \in \left[ {1;2} \right]\). Khi đó bài toán trở thành có bao nhiêu giá trị nguyên của m để phương trình \(f\left( t \right) = m\) có nghiệm \(t \in \left[ {1;2} \right]\).
Quan sát đồ thị hàm số \(y = f\left( t \right)\) trên đoạn \(\left[ {1;2} \right]\) ta thấy, phương trình \(f\left( t \right) = m\) có nghiệm \( \Leftrightarrow 3 \le m \le 5\)
Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {3;4;5} \right\}\): có 3 giá trị của m thỏa mãn.
Chọn: C
Tìm tọa độ điểm M trên trục Ox cách đều hai điểm \(A\left( {1;2; - 1} \right)\) và điểm \(B\left( {2;1;2} \right)\).
\(M \in Ox \Rightarrow M\left( {m;0;0} \right)\)
Theo đề bài, ta có:
\(\begin{array}{l}MA = MB \Leftrightarrow M{A^2} = M{B^2}\\ \Leftrightarrow {\left( {m - 1} \right)^2} + {2^2} + {1^2} = {\left( {m - 2} \right)^2} + {1^2} + {2^2} \Leftrightarrow {\left( {m - 1} \right)^2} = {\left( {m - 2} \right)^2}\\ \Leftrightarrow \left[ \begin{array}{l}m - 1 = m - 2\,\,\left( {Vo\,\,nghiem} \right)\\m - 1 = 2 - m\end{array} \right. \Leftrightarrow m = \dfrac{3}{2} \Rightarrow M\left( {\dfrac{3}{2};0;0} \right)\end{array}\)
Chọn: B
Tích \(\dfrac{1}{{2019!}}{\left( {1 - \dfrac{1}{2}} \right)^1}.{\left( {1 - \dfrac{1}{3}} \right)^2}.{\left( {1 - \dfrac{1}{4}} \right)^3}...{\left( {1 - \dfrac{1}{{2019}}} \right)^{2018}}\) được viết dưới dạng \({a^b}\), khi đó \(\left( {a;b} \right)\) là cặp nào trong các cặp sau?
\(\begin{array}{l}\,\,\,\,\dfrac{1}{{2019!}}{\left( {1 - \dfrac{1}{2}} \right)^1}.{\left( {1 - \dfrac{1}{3}} \right)^2}.{\left( {1 - \dfrac{1}{4}} \right)^3}...{\left( {1 - \dfrac{1}{{2019}}} \right)^{2018}}\\ = \dfrac{1}{{2019!}}.{\left( {\dfrac{1}{2}} \right)^1}.{\left( {\dfrac{2}{3}} \right)^2}.{\left( {\dfrac{3}{4}} \right)^3}...{\left( {\dfrac{{2018}}{{2019}}} \right)^{2018}}\\ = \dfrac{1}{{2019!}}.\dfrac{{1.2.3...2018}}{{{{2019}^{2018}}}} = \dfrac{1}{{{{2019}^{2019}}}} = {2019^{ - 2019}}\end{array}\)
Khi đó \(\left( {a;b} \right)\) là cặp \(\left( {2019; - 2019} \right)\).
Chọn: B
Gọi \(S = C_n^0 + C_n^1 + C_n^2 + ... + C_n^n\). Giá trị của S là bao nhiêu?
\(S = C_n^0 + C_n^1 + C_n^2 + ... + C_n^n = {\left( {1 + 1} \right)^n} = {2^n}\).
Chọn: D
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ: Đồ thị hàm số \(y = f\left( x \right)\) có mấy điểm cực trị?
Đồ thị hàm số \(y = f\left( x \right)\) có 2 điểm cực trị.
Chọn: B
Một hình trụ có chiều cao h và bán kính đáy R. Hình nón có đỉnh là tâm đáy trên của hình trụ và đáy là hình tròn đáy dưới của hình trụ. Gọi \({V_1}\) là thể tích của hình trụ, \({V_2}\) là thể tích của hình nón. Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\).
Nhận xét: Hai khối nón và khối trụ có cùng chiều cao \(h\) và cùng bán kính đáy bằng \(r\).
Ta có: \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{\pi {r^2}h}}{{\dfrac{1}{3}\pi {r^2}h}} = 3\)
Chọn: C
Cho cấp số nhân \({u_1},\,{u_2},\,{u_3},...,{u_n}\) với công bội \(q\) \(\left( {q \ne 0,q \ne 1} \right)\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Khi đó, ta có:
\({S_n} = \dfrac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} \Leftrightarrow {S_n} = \dfrac{{{u_1}\left( {{q^n} - 1} \right)}}{{q - 1}}\).
Chọn: A
Khối hộp có 6 mặt đều là các hình thoi cạnh a, các góc nhọn của các mặt đều bằng \({60^0}\) có thể tích là
Giả sử các góc ở đỉnh A’ đều bằng \({60^0}\), khi đó tứ diện AA’B’D’ là tứ diện đều, có cạnh bằng a.
Gọi I là trung điểm của A’D’, G là trọng tâm tam giác đều A’B’D’.
\( \Rightarrow B'I = \dfrac{{a\sqrt 3 }}{2},\,\,\,B'G = \dfrac{2}{3}B'I = \dfrac{{a\sqrt 3 }}{3},\,\,\,\,{S_{A'B'D'}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)
\(AG = \sqrt {AB{'^2} - B'{G^2}} = \sqrt {{a^2} - \dfrac{{{a^2}}}{3}} = \sqrt {\dfrac{2}{3}} a\)
\({V_{A.A'B'D'}} = \dfrac{1}{3}AG.{S_{A'B'D'}} = \dfrac{1}{3}.\sqrt {\dfrac{2}{3}} .a.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 2 }}{{12}}\)
\({V_{ABCD.A'B'C'D'}} = 2{V_{ABD.A'B'D'}} = 6{V_{A.A'B'D'}} = 6.\dfrac{{{a^3}\sqrt 2 }}{{12}} = \dfrac{{{a^3}\sqrt 2 }}{2}\).
Chọn: D
Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau và một điểm M không thuộc \(\left( P \right)\) và \(\left( Q \right)\). Qua M có bao nhiêu mặt phẳng vuông góc với \(\left( P \right)\) và \(\left( Q \right)\)?
Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau và một điểm M không thuộc \(\left( P \right)\) và \(\left( Q \right)\). Qua M có vô số mặt phẳng vuông góc với \(\left( P \right)\) và \(\left( Q \right)\). Đó là các mặt phẳng chứa d, với d là đường thẳng qua M và vuông góc với \(\left( P \right)\) và \(\left( Q \right)\).
Chọn: D
Tính thể tích V của khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao \(h = 4\).
Thể tích V của khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao \(h = 4\) là: \(V = \dfrac{1}{3}\pi .{\left( {\sqrt 3 } \right)^2}.4 = 4\pi \).
Chọn: A
Cho hình bình hành ABCD với \(A\left( { - 2;3;1} \right),B\left( {3;0; - 1} \right),\,C\left( {6;5;0} \right)\). Tọa độ đỉnh D là
\(ABCD\) là hình bình hành\( \Rightarrow \overrightarrow {DC} = \overrightarrow {AB} \Leftrightarrow \left\{ \begin{array}{l}6 - {x_D} = 3 + 2\\5 - {y_D} = 0 - 3\\ - {z_D} = - 1 - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 1\\{y_D} = 8\\{z_D} = 2\end{array} \right.\,\, \Rightarrow \)\(D\left( {1;8;2} \right)\).
Chọn: C
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị là đường cong trong hình vẽ bên dưới. Đặt \(g\left( x \right) = f\left( {{x^2}} \right)\). Tìm số nghiệm của phương trình \(g'\left( x \right) = 0\).
\(g\left( x \right) = f\left( {{x^2}} \right)\)\( \Rightarrow g'\left( x \right) = 2x.f'\left( x^2 \right)\)
\(g'\left( x \right) = 0 \Leftrightarrow 2x.f'\left( {{x^2}} \right) = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
f'\left( {{x^2}} \right) = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
\left[ \matrix{
{x^2} = 0 \hfill \cr
{x^2} = c \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = \pm \sqrt c \hfill \cr} \right.\)
(với \(2 < c < 3\), được biểu diễn trên hình vẽ bên)
Vậy, phương trình \(g'\left( x \right) = 0\) có 3 nghiệm.
Chọn: C
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) thỏa mãn \(f'\left( x \right) - 2018f\left( x \right) = 2018{x^{2017}}{e^{2018x}}\) với mọi \(x \in \mathbb{R}\), \(f\left( 0 \right) = 2018\). Tính \(f\left( 1 \right)\)?
Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,f'\left( x \right) - 2018f\left( x \right) = 2018{x^{2017}}{e^{2018x}}\\ \Leftrightarrow {e^{ - 2018x}}f'\left( x \right) - 2018{e^{ - 2018x}}.f\left( x \right) = 2018{x^{2017}}\end{array}\)
\( \Rightarrow {\left( {{e^{ - 2018x}}f\left( x \right)} \right)^\prime } = 2018{x^{2017}} \Rightarrow {e^{ - 2018x}}f\left( x \right)\) là một nguyên hàm của \(2018{x^{2017}}\)
Ta có:
\(\int {2018{x^{2017}}} dx = {x^{2018}} + C\)\( \Rightarrow {e^{ - 2018x}}f\left( x \right) = {x^{2018}} + {C_0}\)
Mà \(f\left( 0 \right) = 2018\)\( \Rightarrow 2018 = {C_0}\, \Rightarrow {e^{ - 2018x}}f\left( x \right) = {x^{2018}} + 2018 \Leftrightarrow f\left( x \right) = {x^{2018}}{e^{2018x}} + 2018{e^{2018x}}\)
\( \Rightarrow f\left( 1 \right)\)\( = {e^{2018}} + 2018{e^{2018}} = 2019{e^{2018}}\).
Chọn: A
Tính thể tích của khối lập phương ABCD.A’B’C’D’ cạnh a.
Thể tích của khối lập phương ABCD.A’B’C’D’ cạnh a là : \({a^3}\)
Chọn: C
Trong không gian với hệ trục tọa độ Oxyz, cho \(\overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow a \) là
\(\overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \Rightarrow \) Tọa độ của vectơ \(\overrightarrow a \) là : \(\left( { - 1;2; - 3} \right)\).
Chọn: C
Cho \({\log _3}x = 3{\log _3}2\). Khi đó giá trị của x là
Ta có: \({\log _3}x = 3{\log _3}2 \Leftrightarrow {\log _3}x = {\log _3}{2^3} \Leftrightarrow x = 8\).
Chọn: A
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh a, biết \(SA = SB\), \(SC = SD\), \(\left( {SAB} \right) \bot \left( {SCD} \right)\). Tổng diện tích hai tam giác SAB, SCD bằng \(\dfrac{{7{a^2}}}{{10}}\). Thể tích khối chóp \(S.ABCD\) là
Gọi I, J lần lượt là trung điểm của AB, CD.
\(\Delta SAB\) và \(\Delta SCD\) cân tại S\( \Rightarrow SI \bot AB,\,\,\,SJ \bot CD\)
Ta có: \(\left\{ \begin{array}{l}CD \bot SJ\\CD \bot IJ\end{array} \right. \Rightarrow CD \bot \left( {SIJ} \right) \Rightarrow \left( {SCD} \right) \bot \left( {SIJ} \right)\)
Tương tự : \(\left( {SAB} \right) \bot \left( {SIJ} \right)\) \( \Rightarrow \widehat {\left( {\left( {SAB} \right);\left( {SCD} \right)} \right)} = \widehat {\left( {SI;SJ} \right)} = \widehat {ISJ} = {90^0}\)
Kẻ \(SH \bot IJ\). Mà \(SH \subset \left( {SIJ} \right) \Rightarrow SH \bot CD \Rightarrow SH \bot \left( {ABCD} \right)\)
Ta có: \({S_{\Delta SAB}} + {S_{\Delta SCD}} = \dfrac{1}{2}.SI.AB + \dfrac{1}{2}.SJ.CD\)\( = \dfrac{1}{2}.SI.a + \dfrac{1}{2}.SJ.a = \dfrac{1}{2}.\left( {SI + SJ} \right).a = \dfrac{{7{a^2}}}{{10}}\)
\( \Rightarrow SI + SJ = \dfrac{{7a}}{5}\) (1)
\(\Delta SIJ\) vuông tại S \( \Rightarrow S{I^2} + S{J^2} = I{J^2} \Rightarrow {\left( {SI + SJ} \right)^2} - 2.SI.SJ = {a^2} \Leftrightarrow {\left( {\dfrac{{7a}}{5}} \right)^2} - 2.SI.SJ = {a^2}\)
\( \Leftrightarrow SI.SJ = \dfrac{{12{a^2}}}{{25}}\)
Ta có: \(SI.SJ = SH.IJ \Leftrightarrow \dfrac{{12{a^2}}}{{25}} = SH.a \Leftrightarrow SH = \dfrac{{12a}}{{25}}\)
Thể tích khối chóp \(S.ABCD\) là \(V = \dfrac{1}{3}SH.{S_{ABCD}} = \dfrac{1}{3}.\dfrac{{12a}}{{25}}.{a^2} = \dfrac{{4{a^3}}}{{25}}\).
Chọn: B
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 2019;2019} \right]\) để đồ thị hàm số \(y = \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Đồ thị hàm số có hai tiệm cận đứng \( \Rightarrow 4{x^2} - 2x + m = 0\) (1) có hai nghiệm phân biệt
+) \(x = - \dfrac{1}{2}\) là nghiệm của (1) \( \Leftrightarrow 4.{\left( { - \dfrac{1}{2}} \right)^2} - 2.\left( { - \dfrac{1}{2}} \right) + m = 0 \Leftrightarrow m = - 2\)
Khi đó, \(y = \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x - 2} }}\) (TXĐ: \(D = \left( { - \dfrac{1}{2};1} \right)\))
\(\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x - 2} }} = \mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \dfrac{{2x + 1}}{{\sqrt {\left( {x - 1} \right)\left( {2x + 1} \right)} }} = \mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \sqrt {\dfrac{{2x + 1}}{{x - 1}}} = 0\)
\( \Rightarrow x = - \dfrac{1}{2}\) không phải TCĐ của đồ thị hàm số đã cho \( \Rightarrow \) Đồ thị hàm số có ít hơn 2 đường tiệm cận đứng \( \Rightarrow m = - 2\): Loại
+) \(x = - \dfrac{1}{2}\) là nghiệm của (1) \( \Leftrightarrow m \ne - 2\)
Khi đó, để có hai tiệm cận đứng thì (1) có 2 nghiệm phân biệt\( \Leftrightarrow \Delta ' > 0 \Leftrightarrow 1 - 4m > 0 \Leftrightarrow m < \dfrac{1}{4} \Rightarrow \left\{ \begin{array}{l}m < \dfrac{1}{4}\\m \ne - 2\end{array} \right.\)
Mà \(m \in \mathbb{Z},\,\,m \in \left[ { - 2019;2019} \right] \Rightarrow m \in \left\{ { - 2019; - 2018;...;0} \right\}\backslash \left\{ { - 2} \right\}\): Có 2019 số m thỏa mãn.
Chọn: D
Cho hai hàm số \(f\left( x \right),g\left( x \right)\) liên tục trên \(\mathbb{R}\). Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề sai là: \(\int {\left| {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right|dx} = \dfrac{{\int {f\left( x \right)dx} }}{{\int {g\left( x \right)dx} }}\), \(\left( {g\left( x \right) \ne 0,\,\,\forall x \in \mathbb{R}} \right)\).
Chọn: A
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y + 6z - 1 = 0\). Tâm của mặt cầu là
\(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y + 6z - 1 = 0\) có tâm \(I\left( {2; - 1; - 3} \right)\).
Chọn: C
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có \(f\left( 1 \right) = 1,\,\,f\left( { - 1} \right) = - \dfrac{1}{3}\). Đặt \(g\left( x \right) = {f^2}\left( x \right) - 4f\left( x \right)\). Cho biết đồ thị của \(y = f'\left( x \right)\) có dạng như hình vẽ dưới đây.
Mệnh đề nào sau đây đúng?
Bảng biến thiên của \(y = f\left( x \right)\):
\( \Rightarrow f\left( x \right) \le 1,\forall x\)
Ta có: \(g\left( x \right) = {f^2}\left( x \right) - 4f\left( x \right) \Rightarrow g'\left( x \right) = 2f\left( x \right).f'\left( x \right) - 4f'\left( x \right) = 2f'\left( x \right).\left( {f\left( x \right) - 2} \right)\)
Mà \(f\left( x \right) - 2 < 0,\,\,\forall x\) (do \(f\left( x \right) \le 1,\forall x\))
Ta có bảng biến thiên của \(y = g\left( x \right)\) như sau:
Chọn: B
Đầu năm 2016, Curtis Cooper và các cộng sự tại nhóm nghiên cứu Đại học Central Mis-souri, Mỹ công bố số nguyên tố lớn nhất tại thời điểm đó. Số nguyên tố này là một dạng Mersenne, có giá trị bằng \(M = {2^{74207281}} - 1\). Hỏi M có bao nhiêu chữ số?
+) Xác định số chữ số của \(M + 1 = {2^{74207281}}\)
Tìm số tự nhiên n thỏa mãn \({10^n} \le {2^{74207281}} < {10^{n + 1}} \Leftrightarrow \left\{ \begin{array}{l}{10^n} \le {2^{74207281}}\\{10^{n + 1}} > {2^{74207281}}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}n \le \log \left( {{2^{74207281}}} \right)\\n + 1 > \log \left( {{2^{74207281}}} \right)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}n \le 74207281.\log 2 \approx 22338617,5\\n > 74207281.\log 2 - 1 \approx 22338616,5\end{array} \right. \Leftrightarrow n = 22338617\)
Vậy, \(M + 1 = {2^{74207281}}\) có \(n + 1 = \)22338618 chữ số
+) Xác định số chữ số của \(M = {2^{74207281}} - 1\)
Nhận xét: Do \(M + 1\) là số có 22338618 chữ số nên \(M\) hoặc có 22338618 chữ số hoặc có 22338617 chữ số.
\(M\) có 22338617 khi và chỉ khi \(M + 1 = {10^{22338617}}\), tức là: \({2^{74\,207\,281}} = {10^{22\,338\,617}} \Leftrightarrow {2^{51\,868664}} = {5^{22\,338\,617}}\): vô lí, do 2 là số chẵn, 5 là số lẻ.
Vậy, \(M = {2^{74207281}} - 1\) là số có \(22338618\) chữ số.
Chọn: D
Có bao nhiêu giá trị thực của m để bất phương trình \(\left( {2m + 2} \right)\left( {x + 1} \right)\left( {{x^3} - 1} \right) - \left( {{m^2} + m + 1} \right)\left( {{x^2} - 1} \right) + 2x + 2 < 0\) vô nghiệm?
Ta có: \(\left( {2m + 2} \right)\left( {x + 1} \right)\left( {{x^3} - 1} \right) - \left( {{m^2} + m + 1} \right)\left( {{x^2} - 1} \right) + 2x + 2 < 0\)
\(\begin{array}{l} \Leftrightarrow \left( {x + 1} \right)\left[ {\left( {2m + 2} \right)\left( {{x^3} - 1} \right) - \left( {{m^2} + m + 1} \right)\left( {x - 1} \right) + 2} \right] < 0\\ \Leftrightarrow \left( {x + 1} \right)\left[ {\left( {2m + 2} \right){x^3} - \left( {2m + 2} \right) - \left( {{m^2} + m + 1} \right)x + \left( {{m^2} + m + 1} \right) + 2} \right] < 0\\ \Leftrightarrow \left( {x + 1} \right)\left[ {\left( {2m + 2} \right){x^3} - \left( {{m^2} + m + 1} \right)x + \left( {{m^2} - m + 1} \right)} \right] < 0\,\,\,(*)\end{array}\)
(*) vô nghiệm \( \Leftrightarrow \)\(\left( {x + 1} \right)\left[ {\left( {2m + 2} \right){x^3} - \left( {{m^2} + m + 1} \right)x + \left( {{m^2} - m + 1} \right)} \right] \ge 0\) (2*) luôn đúng với mọi x
\( \Rightarrow x = - 1\) là nghiệm của \(\left( {2m + 2} \right){x^3} - \left( {{m^2} + m + 1} \right)x + \left( {{m^2} - m + 1} \right) = 0\)
\( \Rightarrow - \left( {2m + 2} \right) + \left( {{m^2} + m + 1} \right) + \left( {{m^2} - m + 1} \right) = 0 \Leftrightarrow 2{m^2} - 2m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 1\end{array} \right.\)
+) \(m = 0\):
\((2*) \Leftrightarrow \left( {x + 1} \right)\left( {2{x^3} - x + 1} \right) \ge 0 \Leftrightarrow {\left( {x + 1} \right)^2}\left( {2{x^2} - 2x + 1} \right) \ge 0\) luôn đúng với mọi x
\( \Rightarrow m = 0\) : Thỏa mãn.
+) \(m = 1\):
\((2*) \Leftrightarrow \left( {x + 1} \right)\left( {4{x^3} - 3x + 1} \right) \ge 0 \Leftrightarrow {\left( {x + 1} \right)^2}\left( {4{x^2} - 4x + 1} \right) \ge 0 \Leftrightarrow {\left( {x + 1} \right)^2}{\left( {2x - 1} \right)^2} \ge 0\) luôn đúng với mọi x
\( \Rightarrow m = 1\) : Thỏa mãn.
Vậy có 2 giá trị của m thỏa mãn.
Chọn: D
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Hai điểm \(M,N\) thuộc các cạnh \(AB\) và \(AD\) (M, N không trùng với A, B, D). Sao cho \(\dfrac{{AB}}{{AM}} + 2.\dfrac{{AD}}{{AN}} = 4\). Kí hiệu \(V,\,{V_1}\) lần lượt là thể tích của các khối chóp \(S.ABCD\) và \(S.MBCDN\). Tìm giá trị lớn nhất của tỉ số \(\dfrac{{{V_1}}}{V}\).
Do các khối chóp \(S.ABCD\) và \(S.MBCDN\) có cùng chiều cao kẻ từ S nên \(\dfrac{{{V_1}}}{V} = \dfrac{{{S_{MBCDN}}}}{{{S_{ABCD}}}}\)
Ta có: \(\dfrac{{AB}}{{AM}} + 2.\dfrac{{AD}}{{AN}} = 4\). Áp dụng BĐT Cô si, ta có:
\(\dfrac{{AB}}{{AM}} + 2.\dfrac{{AD}}{{AN}} \ge 2\sqrt {\dfrac{{AB}}{{AM}}.2.\dfrac{{AD}}{{AN}}} = 2\sqrt 2 .\sqrt {\dfrac{{AB.AD}}{{AM.AN}}} \)(với \(\dfrac{{AB}}{{AM}} > 1,\,\,\dfrac{{AD}}{{AN}} > 1\))
\( \Rightarrow 2\sqrt 2 .\sqrt {\dfrac{{AB.AD}}{{AM.AN}}} \le 4 \Leftrightarrow \dfrac{{AB.AD}}{{AM.AN}} \le 2\)
\( \Rightarrow \dfrac{{{S_{\Delta ABD}}}}{{{S_{\Delta AMN}}}} \le 2 \Rightarrow \dfrac{{{S_{\Delta ABCD}}}}{{{S_{\Delta AMN}}}} \le 4\) (do \({S_{\Delta ABD}} = \dfrac{1}{2}{S_{\Delta ABCD}}\))\( \Rightarrow \dfrac{{{S_{\Delta AMN}}}}{{{S_{\Delta ABCD}}}} \ge \dfrac{1}{4}\)\( \Rightarrow \dfrac{{{S_{MBCDN}}}}{{{S_{ABCD}}}} \le \dfrac{3}{4} \Rightarrow \)\(\dfrac{{{V_1}}}{V} \le \dfrac{3}{4}\)
Tỉ số \(\dfrac{{{V_1}}}{V}\) đạt giá trị lớn nhất bằng \(\dfrac{3}{4}\) khi và chỉ khi \(\left\{ \begin{array}{l}\dfrac{{AB}}{{AM}} + 2.\dfrac{{AD}}{{AN}} = 4\\\dfrac{{AB}}{{AM}} = 2.\dfrac{{AD}}{{AN}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{AB}}{{AM}} = 2\\\dfrac{{AD}}{{AN}} = 1\end{array} \right.\)
Chọn: B
Cho hàm số \(y = \left| {{{\sin }^3}x - m.\sin \,x + 1} \right|\). Gọi S là tập hợp tất cả các số tự nhiên m sao cho hàm số đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\). Tính số phần tử của S?
Trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\), hàm số \(y = \sin \,x\)đồng biến.
Đặt \(t = \sin x,\,\,x \in \left( {0;\dfrac{\pi }{2}} \right) \Rightarrow t \in \left( {0;1} \right)\) .
Khi đó, hàm số\(y = \left| {{{\sin }^3}x - m.\sin \,x + 1} \right|\) đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\) khi và chỉ khi \(y = f\left( t \right) = \left| {{t^3} - mt + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\).
Xét hàm số \(y = f\left( t \right) = {t^3} - mt + 1\) trên khoảng \(\left( {0;1} \right)\), có :\(f'\left( t \right) = 3{t^2} - m\)
+) Khi \(m = 0\): \(f'\left( x \right) = 3{x^2} \ge 0,\,\,\forall x\)\( \Rightarrow y = f\left( x \right) = {x^3} + 1\) đồng biến trên \(\left( {0;1} \right)\)
Và đồ thị hàm số \(y = f\left( x \right) = {x^3} + 1\) cắt Ox tại điểm duy nhất là \(x = - 1 \in \left( {0;1} \right)\)
\( \Rightarrow \)\(y = g\left( x \right) = \left| {{x^3} - m\,x + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\) \( \Rightarrow m = 0\): thỏa mãn.
+) \(m > 0\): \(f'\left( x \right) = 0\) có 2 nghiệm phân biệt \({x_1} = - \sqrt {\dfrac{m}{3}} ,\,\,{x_2} = \sqrt {\dfrac{m}{3}} \)
Hàm số \(y = f\left( x \right) = {x^3} - m\,x + 1\) đồng biến trên các khoảng \(\left( { - \infty ; - \sqrt {\dfrac{m}{3}} } \right)\) và \(\left( {\sqrt {\dfrac{m}{3}} ; + \infty } \right)\)
Nhận xét: \(\left( {0;1} \right) \not\subset \left( {\sqrt {\dfrac{m}{3}} ; + \infty } \right)\) , \(\left( {0;1} \right) \not\subset \left( { - \infty ; - \sqrt {\dfrac{m}{3}} } \right)\) , \(\forall m > 0\)
TH1: \( - \sqrt {\dfrac{m}{3}} < 0 < \sqrt {\dfrac{m}{3}} < 1 \Leftrightarrow 0 < m < 3\)
Để \(y = g\left( x \right) = \left| {{x^3} - m\,x + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\) thì \({x^3} - m\,x + 1 = 0\) có nghiệm (bội lẻ) là \(x = \sqrt {\dfrac{m}{3}} \)
\( \Rightarrow \dfrac{{m\sqrt m }}{{3\sqrt 3 }} - \dfrac{{m\sqrt m }}{{\sqrt 3 }} + 1 = 0 \Leftrightarrow - 2m\sqrt m + 3\sqrt 3 = 0 \Leftrightarrow m\sqrt m = \dfrac{{3\sqrt 3 }}{2} \Leftrightarrow m = \dfrac{3}{{\sqrt[3]{4}}}\) (thỏa mãn)
TH2: \( - \sqrt {\dfrac{m}{3}} < 0 < 1 \le \sqrt {\dfrac{m}{3}} \Leftrightarrow m \ge 3\)
Để \(y = g\left( x \right) = \left| {{x^3} - m\,x + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\) thì \({x^3} - m\,x + 1 \le 0,\,\,\forall x \in \left( {0;1} \right)\)
\( \Leftrightarrow mx \le {x^3} + 1,\,\,\forall x \in \left( {0;1} \right) \Leftrightarrow m \le {x^2} + \dfrac{1}{x},\,\,\forall x \in \left( {0;1} \right)\)
Xét hàm số \(y = {x^2} + \dfrac{1}{x},\,\,x \in \left( {0;1} \right)\, \Rightarrow y' = 2x - \dfrac{1}{{{x^2}}}\); \(y' = 0 \Leftrightarrow x = \dfrac{1}{{\sqrt[3]{2}}} \in \left( {0;1} \right)\)
Hàm số liên tục trên \(\left( {0;1} \right)\) và \(y\left( {\dfrac{1}{{\sqrt[3]{2}}}} \right) = \dfrac{3}{{\sqrt[3]{4}}};\,\,\,y\left( 1 \right) = 2;\,\,\mathop {\lim }\limits_{x \to {0^ + }} y = \, + \infty \, \Rightarrow \mathop {\min }\limits_{\left( {0;1} \right)} y = \dfrac{3}{{\sqrt[3]{4}}}\)
Để \(m \le {x^2} + \dfrac{1}{x},\,\,\forall x \in \left( {0;1} \right)\) thì \(m \le \dfrac{3}{{\sqrt[3]{4}}} \Rightarrow \)Không có giá trị của m thỏa mãn.
Vậy, chỉ có giá trị \(m = 0\) thỏa mãn.
Chọn: A
Cho hình chóp \(S.\,ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\) và \(\widehat {ABC} = 60^\circ \). Hình chiếu vuông góc của điểm \(S\) lên mặt phẳng \(\left( {ABCD} \right)\) trùng với trọng tâm tam giác \(ABC\). Gọi \(\varphi \) là góc giữa đường thẳng \(SB\) với mặt phẳng \(\left( {SCD} \right)\), tính \(\sin \varphi \) biết rằng \(SB = a\).
Gọi \(M\) là trung điểm của \(SD\), nhận xét góc giữa \(SB\) và \(\left( {SCD} \right)\) cũng bằng góc giữa \(OM\) và \(\left( {SCD} \right)\) (Vì \(OM//SB\))
Gọi \(H\) là hình chiếu của \(O\) trên \(\left( {SCD} \right)\) \( \Rightarrow \widehat {\left( {OM,\left( {SCD} \right)} \right)} = \widehat {\left( {OM,MH} \right)} = \widehat {OMH}\).
Trong \(\left( {SBD} \right)\) kẻ \(OE//SH\), khi đó tứ diện \(OECD\) là tứ diện vuông nên \(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{C^2}}} + \dfrac{1}{{O{D^2}}} + \dfrac{1}{{O{E^2}}}\).
Ta dễ dàng tính được \(OC = \dfrac{a}{2},OD = \dfrac{{a\sqrt 3 }}{2}\).
Lại có: \(\dfrac{{OE}}{{SH}} = \dfrac{{OD}}{{HD}} = \dfrac{3}{4} \Rightarrow OE = \dfrac{3}{4}SH\), mà \(SH = \sqrt {S{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}} = \dfrac{{a\sqrt 6 }}{3}\)
Do đó \(OE = \dfrac{3}{4}SH = \dfrac{3}{4}.\dfrac{{a\sqrt 6 }}{3} = \dfrac{{a\sqrt 6 }}{4}\).
Suy ra \(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{{{\left( {a/2} \right)}^2}}} + \dfrac{1}{{{{\left( {a\sqrt 3 /2} \right)}^2}}} + \dfrac{1}{{{{\left( {a\sqrt 6 /4} \right)}^2}}} = \dfrac{8}{{{a^2}}} \Rightarrow OH = \dfrac{{a\sqrt 2 }}{4}\).
Tam giác \(OMH\) vuông tại \(H\) có \(OM = \dfrac{1}{2}SB = \dfrac{a}{2},OH = \dfrac{{a\sqrt 2 }}{4} \Rightarrow \sin \widehat {OMH} = \dfrac{{OH}}{{OM}} = \dfrac{{\sqrt 2 }}{2}\).
Vậy \(\sin \varphi = \dfrac{{\sqrt 2 }}{2}\).
Chọn D.
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 2} \right)\left( {{x^2} - 6x + m} \right)\) với mọi \(x \in \mathbb{R}\). Có bao nhiêu số nguyên \(m\) thuộc đoạn \(\left[ { - 2019;\,2019} \right]\) để hàm số \(g\left( x \right) = f\left( {1 - x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ;\, - 1} \right)\)?
Ta có: \(g'\left( x \right) = - f'\left( {1 - x} \right) = - {\left( {1 - x} \right)^2}\left( {1 - x - 2} \right)\left[ {{{\left( {1 - x} \right)}^2} - 6\left( {1 - x} \right) + m} \right]\) \( = - {\left( {1 - x} \right)^2}\left( { - 1 - x} \right)\left( {{x^2} + 4x + m - 5} \right) = {\left( {x - 1} \right)^2}\left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right)\)
Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - \infty ; - 1} \right)\)
\( \Leftrightarrow g'\left( x \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right) \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right)\)
\( \Leftrightarrow {x^2} + 4x + m - 5 \ge 0,\forall x \in \left( { - \infty ; - 1} \right)\) (do \(x + 1 < 0,\forall x \in \left( { - \infty ; - 1} \right)\))
\( \Leftrightarrow h\left( x \right) = {x^2} + 4x - 5 \ge - m\,\,\forall x \in \left( { - \infty - 1} \right) \Leftrightarrow - m \le \mathop {\min }\limits_{\left( { - \infty - 1} \right]} h\left( x \right)\).
Ta có \(h'\left( x \right) = 2x + 4 = 0 \Leftrightarrow x = - 2\).
BBT:
Dựa vào BBT ta có \( - m \le - 9 \Leftrightarrow m \ge 9\).
Mà \(m \in \left[ { - 2019;2019} \right]\) và \(m\) nguyên nên \(m \in \left[ {9;10;11;...;2019} \right]\) hay có \(2019 - 9 + 1 = 2011\) giá trị của \(m\) thỏa mãn.
Chọn C.
Cho hình chóp \(S.\,ABC\) có \(AB = AC = 4,\,BC = 2,\,SA = 4\sqrt 3 \), . Tính thể tích khối chóp \(S.\,ABC.\)
Dễ thấy \(\Delta SAB = \Delta SAC\left( {c.g.c} \right)\) nên \(SB = SC\) hay tam giác \(\Delta SBC\) cân.
Gọi \(M\) là trung điểm \(BC\) ta có: \(AM \bot BC,SM \bot BC \Rightarrow BC \bot \left( {SAM} \right)\).
Gọi \(H\) là hình chiếu của \(S\) trên \(AM\) thì \(SH \bot AM,SH \bot BC\) nên \(SH\) là đường cao của hình chóp.
Xét tam giác \(SAB\) có: \(S{B^2} = S{A^2} + A{B^2} - 2SA.AB\cos {30^0} = 16 \Rightarrow SB = 4 \Rightarrow SC = 4\).
Do đó \(S{M^2} = \dfrac{{S{B^2} + S{C^2}}}{2} - \dfrac{{B{C^2}}}{4} = 15 \Rightarrow SM = \sqrt {15} \).
Tam giác \(ABC\) có \(A{M^2} = \dfrac{{A{B^2} + A{C^2}}}{2} - \dfrac{{B{C^2}}}{4} = 15 \Rightarrow AM = \sqrt {15} \).
Khi đó \({S_{SAM}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = 6\).
Do đó: \(SH = \dfrac{{2{S_{SAM}}}}{{AM}} = \dfrac{{2.6}}{{\sqrt {15} }} = \dfrac{{4\sqrt {15} }}{5}\).
\({V_{S.ABC}} = \dfrac{1}{3}{S_{ABC}}.SH = \dfrac{1}{3}.\dfrac{1}{2}AM.BC.SH = \dfrac{1}{6}.\sqrt {15} .2.\dfrac{{4\sqrt {15} }}{5} = 4\).
Chọn C.
Cho phương trình \(\left( {2\sin x - 1} \right)\left( {\sqrt 3 \tan x + 2\sin x} \right) = 3 - 4{\cos ^2}x\). Tổng tất cả các nghiệm thuộc đoạn \(\left[ {0;\,20\pi } \right]\) của phương trình bằng
\(\left( {2\sin x - 1} \right)\left( {\sqrt 3 \tan x + 2\sin x} \right) = 3 - 4{\cos ^2}x\,\,\left( * \right)\)
Điều kiện: \(\cos x \ne 0 \Leftrightarrow x \ne \dfrac{\pi }{2} + k\pi \).
\(\begin{array}{l}\left( * \right) \Leftrightarrow \left( {2\sin x - 1} \right).\dfrac{{\sqrt 3 \sin x + 2\sin x\cos x}}{{\cos x}} = 3 - 4{\cos ^2}x\\ \Leftrightarrow \left( {2\sin x - 1} \right)\left( {\sqrt 3 \sin x + \sin 2x} \right) + \left( {4{{\cos }^3}x - 3\cos x} \right) = 0\\ \Leftrightarrow 2\sqrt 3 {\sin ^2}x - \sqrt 3 \sin x + 2\sin x\sin 2x - \sin 2x + \cos 3x = 0\\ \Leftrightarrow 2\sqrt 3 {\sin ^2}x - \sqrt 3 \sin x + \cos x - \cos 3x - \sin 2x + \cos 3x = 0\\ \Leftrightarrow \sqrt 3 \sin x\left( {2\sin x - 1} \right) - \sin 2x + \cos x = 0\\ \Leftrightarrow \sqrt 3 \sin x\left( {2\sin x - 1} \right) - \cos x\left( {2\sin x - 1} \right) = 0\\ \Leftrightarrow \left( {2\sin x - 1} \right)\left( {\sqrt 3 \sin x - \cos x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}2\sin x - 1 = 0\,\,\left( 1 \right)\\\sqrt 3 \sin x - \cos x = 0\,\,\left( 2 \right)\end{array} \right.\end{array}\)
Giải \(\left( 1 \right) \Leftrightarrow \sin x = \dfrac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\).
Giải \(\left( 2 \right) \Leftrightarrow \sqrt 3 \sin x = \cos x \Leftrightarrow \sqrt 3 \tan x = 1 \Leftrightarrow \tan x = \dfrac{1}{{\sqrt 3 }} \Leftrightarrow x = \dfrac{\pi }{6} + k\pi \left( {TM} \right)\).
Hợp nghiệm của \(\left( 1 \right)\) và \(\left( 2 \right)\) ta được \(\left[ \begin{array}{l}x = \dfrac{\pi }{6} + k\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).
Mà \(x \in \left[ {0;20\pi } \right] \Rightarrow x \in \left\{ {\dfrac{\pi }{6};\dfrac{\pi }{6} + \pi ;...;\dfrac{\pi }{6} + 19\pi ;\dfrac{{5\pi }}{6};\dfrac{{5\pi }}{6} + 2\pi ;...\dfrac{{5\pi }}{6} + 18\pi } \right\}\)
Vậy tổng các nghiệm là:
\(\begin{array}{l}\,\,\,\,\,\dfrac{\pi }{6} + \dfrac{\pi }{6} + \pi + \dfrac{\pi }{6} + 2\pi + ... + \dfrac{\pi }{6} + 19\pi + \dfrac{{5\pi }}{6} + \dfrac{{5\pi }}{6} + 2\pi + ... + \dfrac{{5\pi }}{6} + 18\pi \\ = 20.\dfrac{\pi }{6} + \left( {1 + 2 + 3 + ... + 19} \right)\pi + \dfrac{{5\pi }}{6}.10 + 2\pi \left( {1 + 2 + ... + 9} \right) = \dfrac{{875\pi }}{3}\end{array}\).
Chọn D.
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(AB = a\sqrt 3 \), \(BC = 2a\), đường thẳng \(AC'\) tạo với mặt phẳng \(\left( {BCC'B'} \right)\) một góc \(30^\circ \). Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng
Trong mặt phẳng \(\left( {ABC} \right)\) kẻ \(AH \bot BC\left( {H \in BC} \right)\).
Lại có \(AH \bot BB'\) (do \(BB \bot \left( {ABC} \right)\) suy ra \(AH \bot \left( {BCC'B'} \right)\).
Suy ra \(\widehat {\left( {AC',\left( {BCC'B'} \right)} \right)} = \widehat {AC'H} = {30^0}\).
Ta có: \(AC = \sqrt {B{C^2} - A{B^2}} = a,AH = \dfrac{{AB.AC}}{{BC}} = \dfrac{{a\sqrt 3 }}{2}\)
\(AC' = \dfrac{{AH}}{{\sin \widehat {AC'H}}} = a\sqrt 3 \) \( \Rightarrow CC' = \sqrt {AC{'^2} - A{C^2}} = a\sqrt 2 \).
Gọi \(R\) là bán kính mặt cầu ngoại tiếp lăng trụ, khi đó \(R = \sqrt {{r^2} + \dfrac{{{h^2}}}{4}} \) với \(r = \dfrac{{BC}}{2} = a\) là bán kính đường tròn ngoại tiếp tam giác vuông \(ABC\) và \(h = CC' = a\sqrt 2 \)
Do đó \(R = \sqrt {{a^2} + \dfrac{{{a^2}}}{2}} = \dfrac{{a\sqrt 6 }}{2} \Rightarrow S = 4\pi {R^2} = 4\pi .\dfrac{{6{a^2}}}{4} = 6\pi {a^2}\).
Chọn A.
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0 \right) = 2\sqrt 2 \), \(f\left( x \right) > 0,\forall x \in \mathbb{R}\) và \(f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\,\forall x \in \mathbb{R}\). Khi đó giá trị \(f\left( 1 \right)\) bằng
Ta có: \(f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} \)
\( \Rightarrow \dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }} = 2x + 1 \Rightarrow \int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} = \int {\left( {2x + 1} \right)dx} \)
Tính \(\int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} \) ta đặt \(\sqrt {1 + {f^2}\left( x \right)} = t \Rightarrow 1 + {f^2}\left( x \right) = {t^2} \Rightarrow 2f\left( x \right)f'\left( x \right)dx = 2tdt\) \( \Rightarrow f\left( x \right)f'\left( x \right)dx = tdt\)
Thay vào ta được \(\int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} = \int {\dfrac{{tdt}}{t}} = \int {dt} = t + C = \sqrt {1 + {f^2}\left( x \right)} + C\)
Do đó \(\sqrt {1 + {f^2}\left( x \right)} + C = {x^2} + x\).
\(f\left( 0 \right) = 2\sqrt 2 \Rightarrow \sqrt {1 + {{\left( {2\sqrt 2 } \right)}^2}} + C = 0 \Leftrightarrow C = - 3\).
Từ đó:
\(\begin{array}{l}\sqrt {1 + {f^2}\left( x \right)} - 3 = {x^2} + x \Rightarrow \sqrt {1 + {f^2}\left( 1 \right)} - 3 = 1 + 1 \Leftrightarrow \sqrt {1 + {f^2}\left( 1 \right)} = 5\\ \Leftrightarrow 1 + {f^2}\left( 1 \right) = 25 \Leftrightarrow {f^2}\left( 1 \right) = 24 \Leftrightarrow f\left( 1 \right) = \sqrt {24} \end{array}\)
Chọn C.