Câu hỏi Đáp án 2 năm trước 38

Cho hàm số \(y =  - {x^3} - m{x^2} + (4m + 9)x + 5\) với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để hàm số nghịch biến trên khoảng ( − ∞; + ∞)?

A. 7

Đáp án chính xác ✅

B. 4

C. 6

D. 5

Lời giải của giáo viên

verified HocOn247.com

Tập xác định: \(\mathbb{R}.\)

Ta có: \(y' =  - 3{x^2} - 2mx + 4m + 9\) , (1)

Để hàm số nghịch biến trên \(( - \infty ; + \infty )\) thì \(y' \ge 0,\forall x \in \mathbb{R}\) ( dấu = chỉ xảy ra tại 1 số hữu hạn điểm)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta {'_{(1)}} \le 0\\ - 3 < 0\end{array} \right. \Leftrightarrow {m^2} + 12m + 27 \le 0 \Leftrightarrow  - 9 \le m \le  - 3\)

Các số nguyên thỏa mãn là: \(\left\{ { - 9, - 8, - 7, - 6, - 5, - 4, - 3} \right\}\)

Vậy có 7 số nguyên m thỏa mãn.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tìm giá trị \(m\)  nhỏ nhất của hàm số \(y = {x^3} - 7{x^2} + 11x - 2\) trên đoạn [0; 2] .

Xem lời giải » 2 năm trước 47
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ \({\rm{Ox}}yz,\)  cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 1 + 3t\\y =  - 2 + t\\z = 2\end{array} \right.\)  và \({d_2}:\frac{{x - 1}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{z}{2}\) mặt phẳng \((P):2x + 2y - 3z = 0\). Phương trình nào dưới đây là phương trình mặt phẳng đi qua giao điểm của \({d_1}\) và \((P)\) , đồng thời vuông góc với \({d_2}\)?

Xem lời giải » 2 năm trước 45
Câu 3: Trắc nghiệm

Đường cong ở hình bên là đồ thị của hàm số \(y = \frac{{ax + b}}{{cx + c}}\) với \(a,b,c,d\) là các số thực. Mệnh đề nào dưới đây đúng?   

Xem lời giải » 2 năm trước 44
Câu 4: Trắc nghiệm

Cho \(F(x) = {x^2}\) là một nguyên hàm của hàm số \(f(x){e^{2x}}\). Tìm nguyên hàm của hàm số \(f'(x){e^{2x}}.\)  

Xem lời giải » 2 năm trước 44
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ \({\rm{Ox}}yz\),  cho mặt cầu  \((S):{x^2} + {y^2} + {z^2} = 9\), điểm \(M(1;1;2)\) và mặt phẳng \((P):x + y + z - 4 = 0\). Gọi \(\Delta \) là đường thẳng đi qua M, thuộc \((P)\) và cắt \((S)\) tại hai điểm A, B sao cho AB nhỏ nhất. Biết rằng \(\Delta \) có một vecto chỉ phương là \(\overrightarrow u (1;a;b)\), tính \(T = a - b.\)  

Xem lời giải » 2 năm trước 43
Câu 6: Trắc nghiệm

Cho hình chóp tứ giác đều S.ABCD có các cạnh đều bằng \(a\sqrt 2 \). Tính thể tích của khối
nón có đỉnh S và đường tròn đáy là đường tròn nội tiếp tứ giác ABCD.      

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Phương trình nào dưới đây nhận hai số phức \(1 + \sqrt 2 i\) và \(1 - \sqrt 2 i\) là nghiệm?   

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Trong không gian với hệ tọa độ \({\rm{Ox}}yz\)  cho mặt phẳng\((P):x - 2y + z - 5 = 0\). Điểm nào dưới đây thuộc \((P)\)?

Xem lời giải » 2 năm trước 39
Câu 9: Trắc nghiệm

Cho \(\int\limits_0^6 {f(x)dx = 12} \) . Tính \(I = \int\limits_0^2 {f(3x)dx} .\)  

Xem lời giải » 2 năm trước 39
Câu 10: Trắc nghiệm

Có bao nhiêu số phức z thỏa mãn \(\left| {z - 3i} \right| = 5\) và \(\frac{z}{{z - 4}}\) là số thuần ảo?         

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Tìm giá trị thực của tham số \(m\) để phương trình \(\log _3^2x - m{\log _3}x + 2m - 7 = 0\) có hai nghiệm thực \({x_1},{x_2}\)  thỏa mãn \({x_1}{x_2} = 81.\)           

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\) cho điểm \(M(1; - 2;3)\) . Gọi  \(I\) là hình chiếu vuông góc của \(M\)  trên trục \({\rm{Ox}}\). Phương trình nào dưới đây là phương trình của mặt cầu tâm \(I\)  bán kính \(IM\)?

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Cho \({\log _a}x = 3,{\log _b}x = 4\)  với \(a,b\) là các số thực lớn hơn 1. Tính \(P = {\log _{ab}}x.\)

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho hàm số \(y = f(x)\).  Đồ thị của hàm số \(y = f'(x)\) như hình bên. Đặt \(h(x) = 2f(x) - {x^2}\). Mệnh đề nào dưới đây đúng?    

Xem lời giải » 2 năm trước 37

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »