Câu hỏi Đáp án 2 năm trước 33

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB=a\sqrt{3},\,\,AD=a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo \(a\) diện tích \(S\) của mặt cầu ngoại tiếp hình chóp \(S.ABCD.\) 

A. \(S=5\pi {{a}^{2}}.\) 

Đáp án chính xác ✅

B. \(S=2\pi {{a}^{2}}.\)    

C. \(S=10\pi {{a}^{2}}.\)    

D. \(S=4\pi {{a}^{2}}.\) 

Lời giải của giáo viên

verified HocOn247.com

Cách 1:

Bán kính đường tròn ngoại tiếp hình chữ nhật \(ABCD\) là \({{R}_{ABCD}}=a.\)

Bán kính đường tròn ngoại tiếp tam giác \(ABC\) là \({{R}_{\Delta \,ABC}}=a\sqrt{3}.\frac{\sqrt{3}}{3}=a.\)

Áp dụng công thức tính nhanh, bán kính mặt cầu ngoại tiếp hình chóp \(S.ABCD\) là

\(R=\sqrt{R_{ABCD}^{2}+R_{\Delta \,ABC}^{2}-\frac{A{{B}^{2}}}{4}}=\sqrt{{{a}^{2}}+{{a}^{2}}-\frac{{{\left( a\sqrt{3} \right)}^{2}}}{4}}=\frac{a\sqrt{5}}{2}.\)

Vậy diện tích mặt cầu cần tính là \(S=4\pi {{R}^{2}}=4\pi .{{\left( \frac{a\sqrt{5}}{2} \right)}^{2}}=5\pi {{a}^{2}}.\)

Cách 2 :

Gọi H là trung điểm của \(AB\Rightarrow SH\bot \left( ABCD \right)\)

Gọi O là tâm hình chữ nhật ABCD \(\Rightarrow \) O là tâm đường tròn ngoại tiếp \(ABCD\).

Qua O kẻ đường thẳng \({{d}_{1}}//SH\Rightarrow {{d}_{1}}\bot \left( ABCD \right)\) tại O.

Gọi \(G\) là tâm tam giác đều \(ABC,\) qua G kẻ \({{d}_{2}}//HI\Rightarrow {{d}_{2}}\bot \left( ABC \right)\) tại G.

Gọi \(I={{d}_{1}}\cap {{d}_{2}}\Rightarrow I\) là tâm đường tròn ngoại tiếp chóp \(S.ABCD\).

Ta có : \(IO=GH=\frac{1}{3}SH=\frac{1}{3}.\frac{a\sqrt{3}.\sqrt{3}}{2}=\frac{a}{2};AC=\sqrt{A{{B}^{2}}+A{{D}^{2}}}=2a\Rightarrow AO=\frac{1}{2}AC=a\).

Xét tam giác vuông  AIO có \(IA=\sqrt{I{{O}^{2}}+O{{A}^{2}}}=\sqrt{{{\left( \frac{a}{2} \right)}^{2}}+{{a}^{2}}}=\frac{a\sqrt{5}}{2}\)

Vậy diện tích mặt cầu cần tính là \(S=4\pi {{R}^{2}}=4\pi .{{\left( \frac{a\sqrt{5}}{2} \right)}^{2}}=5\pi {{a}^{2}}.\)

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y=\left( 3m+1 \right)x+3+m\) vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-1.\)  

Xem lời giải » 2 năm trước 42
Câu 2: Trắc nghiệm

Cho đồ thị hàm số như hình vẽ. Mệnh đề nào dưới đây là đúng ? 

Xem lời giải » 2 năm trước 40
Câu 3: Trắc nghiệm

Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)=\dfrac{1}{2{{e}^{x}}+3}\) thỏa mãn \(F\left( 0 \right)=10.\) Tìm \(F\left( x \right).\) 

Xem lời giải » 2 năm trước 39
Câu 4: Trắc nghiệm

Có 10 đội bóng thi đấu theo thể thức vòng tròn một lượt, thắng được 3 điểm, hòa 1 điểm, thua 0 điểm. Kết thúc giải đấu, tổng cộng điểm số của tất cả 10 đội là 130. Hỏi có bao nhiêu trận hòa ?  

Xem lời giải » 2 năm trước 39
Câu 5: Trắc nghiệm

Cho hàm số \(y=f\left( x \right),\) có bảng biến thiên như sau: Mệnh đề nào dưới đây đúng ? 

Xem lời giải » 2 năm trước 39
Câu 6: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f\left( x \right)=\frac{2}{4x-3}.\) 

Xem lời giải » 2 năm trước 38
Câu 7: Trắc nghiệm

Cho \(F\left( x \right)=\left( a{{x}^{2}}+bx-c \right){{e}^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)=\left( 2018{{x}^{2}}-3x+1 \right){{e}^{2x}}\) trên khoảng \(\left( -\,\infty ;+\,\infty  \right).\) Tính tổng \(T=a+2b+4c.\) 

Xem lời giải » 2 năm trước 38
Câu 8: Trắc nghiệm

Tìm giá trị lớn nhất của hàm số sau \(y=\sqrt{x+1}+\sqrt{3-x}\) 

Xem lời giải » 2 năm trước 38
Câu 9: Trắc nghiệm

Xét các số thực \(x,\,\,y\) với \(x\ge 0\) thỏa mãn điều kiện:\({{2018}^{x\,+\,3y}}+{{2018}^{xy\,+\,1}}+x+1={{2018}^{-\,xy\,-\,1}}+\frac{1}{{{2018}^{x\,+\,3y}}}-y\left( x+3 \right)\)Gọi \(m\) là giá trị nhỏ nhất của biểu thức \(T=x+2y.\) Mệnh đề nào sau đây đúng ? 

Xem lời giải » 2 năm trước 37
Câu 10: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( 1;-\,2;3 \right).\) Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( Oyz \right)\) là điểm \(M.\) Tọa độ của điểm \(M\) là 

Xem lời giải » 2 năm trước 37
Câu 11: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz,\) cho hai vectơ \(\vec{u},\,\,\vec{v}\) tạo với nhau một góc \({{120}^{0}}\) và \(\left| {\vec{u}} \right|=2;\)\(\left| {\vec{v}} \right|=5.\) Tính giá trị biểu thức \(\left| \vec{u}+\vec{v} \right|.\)  

Xem lời giải » 2 năm trước 37
Câu 12: Trắc nghiệm

Cho phương trình lượng giác \(2m\sin x\cos x+4{{\cos }^{2}}x=m+5,\) với \(m\) là một phần tử của tập hợp \(E=\left\{ -\,3;-\,2;-\,1;0;1;2 \right\}.\) Có bao nhiêu giá trị của \(m\) để phương trình đã cho có nghiệm ? 

Xem lời giải » 2 năm trước 37
Câu 13: Trắc nghiệm

Cho hình trụ \(\left( T \right)\) có \(\left( C \right)\) và \(\left( {{C}'} \right)\) là hai đường tròn đáy nội tiếp hai mặt đối diện của một hình lập phương. Biết rằng, trong tam giác cong tạo bởi đường tròn \(\left( C \right)\) và hình vuông ngoại tiếp của \(\left( C \right)\) có một hình chữ nhật kích thước \(a\,\,\times \,\,2a\) (như hình vẽ dưới đây). Tính thể tích \(V\) của khối trụ \(\left( T \right)\) theo \(a.\)

Xem lời giải » 2 năm trước 37
Câu 14: Trắc nghiệm

Tìm tập xác định \(D\) của hàm số \(y={{\left( {{x}^{2}}-3x+2 \right)}^{-\,3}}.\) 

Xem lời giải » 2 năm trước 37
Câu 15: Trắc nghiệm

Nếu \({{\log }_{2}}\left( {{\log }_{8}}x \right)={{\log }_{8}}\left( {{\log }_{2}}x \right)\) thì \({{\left( {{\log }_{2}}x \right)}^{2}}\) bằng 

Xem lời giải » 2 năm trước 36

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »