Câu hỏi Đáp án 2 năm trước 37

Cho hình chóp \(S.ABC\text{D}\) có đáy là hình thoi cạnh a, góc ABC bằng \({{60}^{0}}\). SA vuông góc với mặt phẳng \(\left( ABCD \right), SA=\frac{a\sqrt{3}}{3}\) (minh họa như hình bên). Góc giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right)\) bằng

A. 30o

Đáp án chính xác ✅

B. 45o

C. 60o

D. 90o

Lời giải của giáo viên

verified HocOn247.com

Ta có: \(SC\cap \left( ABCD \right)=C; SA\bot \left( ABCD \right)\) tại A.

\(\Rightarrow \) Hình chiếu vuông góc của SC lên mặt phẳng \(\left( ABCD \right)\) là AC.

\(\Rightarrow \) Góc giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right)\) là \(\alpha =\widehat{SCA}\)

Do ABCD là hình thoi cạnh a và \(\widehat{ABC}={{60}^{0}}\) nên tam giác ABC đều cạnh a. Do đó AC=a.

Suy ra: \(\tan \widehat{SCA}=\frac{SA}{AC}=\frac{\sqrt{3}}{3}\)

Do đó: \(\alpha =\widehat{SBA}={{30}^{\text{o}}}\)

Vậy góc giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right)\) bằng \({{30}^{\text{o}}}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho số phức \(z=3+i\). Phần thực của số phức \(2z+1+i\) bằng

Xem lời giải » 2 năm trước 42
Câu 2: Trắc nghiệm

Cho parabol \(\left( P \right):y={{x}^{2}}\) và một đường thẳng d thay đổi cắt \(\left( P \right)\) tại hai điểm A, B sao cho AB=2018. Gọi S là diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và đường thẳng d. Tìm giá trị lớn nhất \({{S}_{max}}\) của S.

Xem lời giải » 2 năm trước 40
Câu 3: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau.

Đồ thị hàm số \(y=\left| f\left( x-2017 \right)+2018 \right|\) có bao nhiêu điểm cực trị?

Xem lời giải » 2 năm trước 39
Câu 4: Trắc nghiệm

Cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y+2z-3=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).

Xem lời giải » 2 năm trước 39
Câu 5: Trắc nghiệm

Tính tích phân \(I=\int\limits_{0}^{1}{{{8}^{x}}\text{d}x}\).

Xem lời giải » 2 năm trước 39
Câu 6: Trắc nghiệm

Tất cả nguyên hàm của hàm số \(f\left( x \right)=\frac{1}{2x+3}\) là

Xem lời giải » 2 năm trước 39
Câu 7: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\) và \(M\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right)\in \left( S \right)\) sao cho \(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\) đạt giá trị nhỏ nhất. Khi đó \({{x}_{0}}+{{y}_{0}}+{{z}_{0}}\) bằng

Xem lời giải » 2 năm trước 38
Câu 8: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình bên. Tìm số cực trị của hàm số \(y=f\left( x \right)\)

Xem lời giải » 2 năm trước 38
Câu 9: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f(x)={{\text{e}}^{x}}+2\sin x\).

Xem lời giải » 2 năm trước 38
Câu 10: Trắc nghiệm

Trong không gian với hệ tọa độ Oxy, cho hai điểm \(A\left( 1\,;\,1\,;\,0 \right), B\left( 0\,;\,3\,;\,3 \right)\). Khi đó

Xem lời giải » 2 năm trước 37
Câu 11: Trắc nghiệm

Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l} 4x\quad \,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\;x > 2\\ - 2x + 12\quad {\rm{khi}}\;x \le 2 \end{array} \right.\). Tính tích phân \(I = \int\limits_0^{\sqrt 3 } {\frac{{x.f(\sqrt {{x^2} + 1} )}}{{\sqrt {{x^2} + 1} }}dx}  + 4\int\limits_{\ln 2}^{\ln 3} {{e^{2x}}.f\left( {1 + {e^{2x}}} \right)dx} \)

Xem lời giải » 2 năm trước 37
Câu 12: Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình chữ nhật có cạnh AB=2,AD=4. Cạnh bên SA=2 và vuông góc với đáy (tham khảo hình vẽ). Thể tích V của khối chóp S.ABCD bằng

Xem lời giải » 2 năm trước 37
Câu 13: Trắc nghiệm

Cho cấp số nhân \(\left( {{u}_{n}} \right)\) có số hạng đầu \({{u}_{1}}=5\) và \({{u}_{6}}=-160.\) Công sai q của cấp số nhân đã cho là

Xem lời giải » 2 năm trước 37
Câu 14: Trắc nghiệm

Đạo hàm của hàm số \(y={{\log }_{5}}x\) là

Xem lời giải » 2 năm trước 37
Câu 15: Trắc nghiệm

Tính môđun số phức nghịch đảo của số phức \(z={{\left( 1-2i \right)}^{2}}\).

Xem lời giải » 2 năm trước 36

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »