Cho hình chóp đều \(S.ABC\) có độ dài cạnh đáy bằng \(2\), điểm \(M\) thuộc cạnh \(SA\) sao cho \(SA = 4SM\) và \(SA\) vuông góc với mặt phẳng \(\left( {MBC} \right)\). Thể tích \(V\) của khối chóp \(S.ABC\) là
A. \(V = \dfrac{2}{3}\).
B. \(V = \dfrac{{2\sqrt 5 }}{9}\).
C. \(\dfrac{4}{3}\).
D. \(V = \dfrac{{2\sqrt 5 }}{3}\).
Lời giải của giáo viên
Gọi độ dài cạnh bên của hình chóp đều \(S.ABC\) là \(SA = SB = SC = 4x\left( {x > 0} \right)\) khi đó vì \(SA = 4SM \Rightarrow SM = x;AM = 3x.\)
Gọi \(D\) là trung điểm \(BC\) suy ra \(AD = \dfrac{{2\sqrt 3 }}{2} = \sqrt 3 \) (đường trung tuyến trong tam giác \(ABC\) đều cạnh \(2\)) và \(DC = \dfrac{{CB}}{2} = 1.\)
Vì \(SA \bot \left( {MBC} \right) \Rightarrow \left\{ \begin{array}{l}SA \bot MC\\SA \bot MD\end{array} \right.\)
Xét tam giác \(AMD\) vuông tại \(M\), ta có \(M{D^2} = A{D^2} - A{M^2} = {\left( {\sqrt 3 } \right)^2} - {\left( {3x} \right)^2} = 3 - 9{x^2}\)
Xét tam giác \(SBC\) cân tại \(S \Rightarrow SD \bot BC\) nên theo định lý Pytago cho tam giác vuông \(SDC\) ta có \(S{D^2} = S{C^2} - C{D^2} = {\left( {4x} \right)^2} - {1^2} = 16{x^2} - 1\)
Xét tam giác \(SMD\) vuông tại \(M\) có
\(S{D^2} = M{D^2} + M{S^2} \Leftrightarrow 16{x^2} - 1 = 3 - 9{x^2} + {x^2} \Leftrightarrow 24{x^2} = 4 \Leftrightarrow {x^2} = \dfrac{1}{6} \Rightarrow x = \dfrac{1}{{\sqrt 6 }}\)
Suy ra \(SM = \dfrac{1}{{\sqrt 6 }};M{D^2} = 3 - 9.\dfrac{1}{6} = \dfrac{3}{2} \Rightarrow MD = \dfrac{{\sqrt 6 }}{2}\)
Ta có \(SA \bot BC;AD \bot BC \Rightarrow BC \bot \left( {SAD} \right) \Rightarrow BC \bot MD\) nên \({S_{\Delta MBC}} = \dfrac{1}{2}.MD.BC = \dfrac{1}{2}.\dfrac{{\sqrt 6 }}{2}.2 = \dfrac{{\sqrt 6 }}{2}\)
\({V_{S.MBC}} = \dfrac{1}{3}.SM.{S_{\Delta MBC}} = \dfrac{1}{3}.\dfrac{1}{{\sqrt 6 }}.\dfrac{{\sqrt 6 }}{2} = \dfrac{1}{6}.\)
Ta có \(\dfrac{{{V_{S.MBC}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SB}}{{SB}}.\dfrac{{SC}}{{SC}} = \dfrac{1}{4} \Leftrightarrow {V_{S.ABC}} = 4V = 4.\dfrac{1}{6} = \dfrac{2}{3}.\)
Chọn A
CÂU HỎI CÙNG CHỦ ĐỀ
Tập xác định của hàm số \(y = {\left[ {\ln \left( {x - 2} \right)} \right]^\pi }\) là:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^4 {f\left( x \right)dx} = 10,\,\,\int\limits_3^4 {f\left( x \right)dx} = 4\). Tích phân \(\int\limits_0^3 {f\left( x \right)dx} \) bằng:
Cho khối chóp tam giác \(S.ABC\) có đỉnh \(S\) và đáy là tam giác \(ABC\). Gọi \(V\) là thể tích của khối chóp. Mặt phẳng đi qua trọng tâm của ba mặt bên của khối chóp chia khối chóp thành hai phần. Tính theo \(V\) thể tích của phần chứa đáy của khối chóp.
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.
Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \(2f\left( x \right) + {x^2} > 4x + m\) nghiệm đúng với mọi \(x \in \left( { - 1;3} \right)\).
Lăng trụ có chiều cao bằng \(a\), đáy là tam giác vuông cân và có thể tích bằng \(2{a^3}\). Cạnh góc vuông của đáy lăng trụ bằng
Hàm số \(y = - {x^3} + 3{x^2} - 2\) đồng biến trên khoảng:
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hai đường tròn \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) lần lượt có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 1\) và \({\left( {x + 1} \right)^2} + {y^2} = 1\). Biết đồ thị hàm số \(y = \dfrac{{ax + b}}{{x + c}}\) đi qua tâm của \(\left( {{C_1}} \right)\), đi qua tâm của \(\left( {{C_2}} \right)\) và có các đường tiệm cận tiếp xúc với cả \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\). Tổng \(a + b + c\) là
Cho \(n \in \mathbb{N}\) và \(n! = 1\). Số giá trị của \(n\) thỏa mãn giả thiết đã cho là:
Cho tứ diện \(ABCD\). Trên các cạnh \(AB\),\(BC\), \(CA\), \(AD\) lần lượt lấy 3; 4; 5; 6 điểm phân biệt khác các điểm \(A\), \(B\), \(C\), \(D\). Số tam giác phân biệt có các đỉnh là các điểm vừa lấy là
Hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và dấu của đạo hàm được cho bởi bảng dưới đây:
Hàm số \(y = f\left( {2x - 2} \right)\) nghịch biến trên khoảng:
Cho hàm số \(y = a{x^4} + b{x^2} + c\) (\(a \ne 0\)) có đồ thị như hình vẽ dưới đây.
Mệnh đề nào dưới đây đúng?
Cho hình chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B\), \(\widehat C = 60^\circ \), \(AC = 2\), \(SA \bot \left( {ABC} \right)\), \(SA = 1\). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách \(d\) giữa \(SM\) và \(BC\) là
Số nào sau đây là điểm cực đại của hàm số \(y = {x^4} - 2{x^3} + {x^2} + 2\)?
Với \(a\) là số thực dương khác \(1\) tùy ý, \({\log _{{a^2}}}{a^3}\) bằng
Một hộp có 10 quả cầu xanh, 5 quả cầu đỏ. Lấy ngẫu nhiên 5 quả từ hộp đó. Xác suất để được 5 quả có đủ hai màu là: