Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Thanh Đa

Đề thi thử THPT QG năm 2022 môn Toán

  • Hocon247

  • 50 câu hỏi

  • 90 phút

  • 71 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 150078

Cho hàm số \(y = \dfrac{{2x + 1}}{{x + 2}}\). Khẳng định nào dưới đây đúng? 

Xem đáp án

TXĐ: \(D=\mathbb{R}\backslash \left\{ -2 \right\}\).

Ta có: \(y' = \dfrac{{2.2 - 1.1}}{{{{\left( {x + 2} \right)}^2}}} = \dfrac{3}{{{{\left( {x + 2} \right)}^2}}} > 0\,\,\forall x \in \mathbb{R}\backslash \left\{ { - 2} \right\} \Rightarrow \) Hàm số đồng biến trên \(\left( { - \infty ; - 2} \right)\) và \(\left( -2;+\infty  \right)\).

Chọn D.

Câu 2: Trắc nghiệm ID: 150079

Với \(a\) là số thực dương khác \(1\) tùy ý, \({\log _{{a^2}}}{a^3}\) bằng 

Xem đáp án

Ta có \({{\log }_{{{a}^{2}}}}{{a}^{3}}=\dfrac{3}{2}{{\log }_{a}}a=\dfrac{3}{2}\).

Chọn A.

Câu 3: Trắc nghiệm ID: 150080

Hàm số \(y = \dfrac{1}{3}{x^3} + {x^2} - 3x + 1\) đạt cực tiểu tại điểm 

Xem đáp án

TXĐ: \(D = \mathbb{R}\).

Ta có \(y'={{x}^{2}}+2x-3,\,\,y''=2x+2\).

Hàm số đạt cực tiểu tại 

\(x = {x_0} \Leftrightarrow \left\{ \begin{array}{l}
y'\left( {{x_0}} \right) = 0\\
y''\left( {{x_0}} \right) > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x_0^2 + 2{x_0} - 3 = 0\\
2{x_0} + 2 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
{x_0} = 1\\
{x_0} = - 3
\end{array} \right.\\
{x_0} > - 1
\end{array} \right. \Leftrightarrow {x_0} = 1\)

Chọn B.

Câu 4: Trắc nghiệm ID: 150081

Thể tích của khối chóp có diện tích đáy bằng \(6\) và chiều cao bằng \(4\) là 

Xem đáp án

Sử dụng công thức tính thể tích khối chóp \(V = \dfrac{1}{3}Sh\) trong đó \(S;h\) lần lượt là diện tích đáy và chiều cao khối chóp.

Ta có \(V=\dfrac{1}{3}.6.4=8\).

Chọn D.

Câu 5: Trắc nghiệm ID: 150082

Cho hình hộp đứng \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình thoi có hai đường chéo \(AC = a\), \(BD = a\sqrt 3 \) và cạnh bên \(AA' = a\sqrt 2 \). Thể tích \(V\) của khối hộp đã cho là 

Xem đáp án

Ta có \({{S}_{ABCD}}=\dfrac{1}{2}AC.BD=\dfrac{1}{2}.a.a\sqrt{3}=\dfrac{{{a}^{2}}\sqrt{3}}{2}\).

\( \Rightarrow {V_{ABCD.A'B'C'D'}} = AA'.{S_{ABCD}} = a\sqrt 2 .\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 6 }}{2}\).

Chọn C.

Câu 6: Trắc nghiệm ID: 150083

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) \(\left( {a \ne 0} \right)\) có đồ thị như hình dưới đây.

Khẳng định nào dưới đây đúng?

Xem đáp án

Dựa vào đồ thị hàm số ta thấy \(\mathop {\lim }\limits_{x \to  + \infty } y =  - \infty  \Rightarrow a < 0 \Rightarrow \) Loại các đáp án C và D.

Ta có \(y'=3a{{x}^{2}}+2bx+c\).

Do đồ thị hàm số không có cực trị \(\Rightarrow pt\,\,y'=0\) vô nghiệm.

\(\Delta '={{b}^{2}}-3ac<0\).

Vậy \(\left\{ \begin{align}  & a<0 \\  & {{b}^{2}}-3ac<0 \\ \end{align} \right.\).

Chọn B.

Câu 7: Trắc nghiệm ID: 150084

Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu của đạo hàm như sau.

Hàm số \(y =  - 2f\left( x \right) + 2019\) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Xem đáp án

Ta có: \(y'=-2f'\left( x \right)<0\Leftrightarrow f'\left( x \right)>0\Leftrightarrow x\in \left( -\infty ;-2 \right)\cup \left( -1;2 \right)\cup \left( 4;+\infty  \right)\).

\(\Rightarrow \) Hàm số \(y=-2f\left( x \right)+2019\) nghịch biến trên các khoảng \(\left( -\infty ;-2 \right);\,\,\left( -1;2 \right)\) và \(\left( 4;+\infty  \right)\).

Chọn B.

Câu 8: Trắc nghiệm ID: 150085

Cho \(a\) và \(b\) lần lượt là số hạng thứ hai và thứ mười của một cấp số cộng có công sai \(d \ne 0.\) Giá trị của biểu thức \({\log _2}\left( {\dfrac{{b - a}}{d}} \right)\) là một số nguyên có số ước tự nhiên bằng 

Xem đáp án

Gọi cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng thứ hai là \(a = {u_2} = {u_1} + d\)  và số hạng thứ \(10\) là \(b = {u_{10}} = {u_1} + 9d\)

Khi đó \({\log _2}\left( {\dfrac{{b - a}}{d}} \right) = {\log _2}\left( {\dfrac{{{u_1} + 9d - {u_1} - d}}{d}} \right) = {\log _2}\left( {\dfrac{{8d}}{d}} \right) = {\log _2}8 = 3.\)

Các ước tự nhiên của \(3\) là \(1\) và \(3.\)

Chọn C.

Câu 9: Trắc nghiệm ID: 150086

Cho khối chóp tứ giác \(S.ABCD\)có đáy \(ABCD\) là hình thoi và \(SABC\) là tứ diện đều cạnh \(a\). Thể tích \(V\) của khối chóp \(S.ABCD\) là 

Xem đáp án

Gọi \(H\) là trọng tâm tam giác \(ABC\). Vì \(S.ABC\) là tứ diện đều cạnh \(a\) nên \(SH \bot \left( {ABC} \right)\) hay \(SH \bot \left( {ABCD} \right)\)  và \(SA = SB = SC = AB = AC = BC = a\)

Gọi \(O\) là giao điểm hai đường chéo hình thoi \(ABCD\) thì \(BH = \dfrac{2}{3}BO\).

Vì \(ABC\) đều có \(BO\) là trung tuyến nên \(BO = \dfrac{{a\sqrt 3 }}{2}\)

\( \Rightarrow BH = \dfrac{2}{3}BO = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\) và  \(BD = 2BO = 2.\dfrac{{a\sqrt 3 }}{2} = a\sqrt 3 .\)

Xét tam giác \(SBH\) vuông tại \(H\) ta có \(SH = \sqrt {S{B^2} - B{H^2}}  = \sqrt {{a^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{\sqrt 6 a}}{3}\)

Diện tích hình thoi \(ABCD\) là \({S_{ABCD}} = \dfrac{1}{2}AC.BD = \dfrac{1}{2}a.a\sqrt 3  = \dfrac{{{a^2}\sqrt 3 }}{2}\)

Thể tích khối chóp \(S.ABCD\) là \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} = \dfrac{1}{3}.\dfrac{{a\sqrt 6 }}{3}.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 2 }}{6}.\)

Chọn B.

Câu 10: Trắc nghiệm ID: 150087

Cho khối chóp tam giác \(S.ABC\) có đỉnh \(S\) và đáy là tam giác \(ABC\). Gọi \(V\) là thể tích của khối chóp. Mặt phẳng đi qua trọng tâm của ba mặt bên của khối chóp chia khối chóp thành hai phần. Tính theo \(V\) thể tích của phần chứa đáy của khối chóp. 

Xem đáp án

Gọi \(M,N,P\) lần lượt là trung điểm các cạnh \(AB,BC,AC\) và \({G_1};{G_2};{G_3}\) lần lượt là trọng tâm các tam giác \(SAB;SBC;SAC.\)

Theo tính chất trọng tâm ta có \(\dfrac{{S{G_1}}}{{SM}} = \dfrac{{S{G_2}}}{{SN}} = \dfrac{{S{G_3}}}{{SP}} = \dfrac{2}{3}\)

Trong \(\left( {SBC} \right)\), qua \({G_2}\) kẻ đường thẳng song song với \(BC\) cắt \(SB,SC\) lần lượt tại \(E\) và \(F.\)

Trong \(\left( {SAC} \right)\), đường thẳng \(F{G_3}\) cắt \(SA\) tại \(D.\)

Lúc này \(\left( {{G_1}{G_2}{G_3}} \right) \equiv \left( {DEF} \right)\)

Vì \(EF//BC \Rightarrow \dfrac{{SE}}{{SB}} = \dfrac{{SF}}{{SC}} = \dfrac{{S{G_2}}}{{SN}} = \dfrac{2}{3}\)  (theo định lý Ta-lét)

Lại có trong \(\Delta SPC\) có \(\dfrac{{S{G_3}}}{{SP}} = \dfrac{{SF}}{{SC}} = \dfrac{2}{3} \Rightarrow F{G_3}//PC \Rightarrow DF//BC \Rightarrow \dfrac{{SD}}{{SA}} = \dfrac{{SF}}{{SC}} = \dfrac{2}{3}\)

Từ đó ta có \(\dfrac{{{V_{S.DEF}}}}{{{V_{S.ABC}}}} = \dfrac{{SD}}{{SA}}.\dfrac{{SE}}{{SB}}.\dfrac{{SF}}{{SC}} = \dfrac{2}{3}.\dfrac{2}{3}.\dfrac{2}{3} = \dfrac{8}{{27}} \Rightarrow {V_{S.DEF}} = \dfrac{8}{{27}}V\)

Nên phần chứa đáy của hình chóp là \(V - \dfrac{8}{{27}}V = \dfrac{{19}}{{27}}V\)

Chọn C.

Câu 11: Trắc nghiệm ID: 150088

Cho mặt cầu \(\left( S \right)\) tâm \(O\), bán kính bằng 2. \(\left( P \right)\) là mặt phẳng cách \(O\) một khoảng bằng 1 và cắt \(\left( S \right)\) theo một đường tròn \(\left( C \right)\). Hình nón \(\left( N \right)\) có đáy là \(\left( C \right)\), đỉnh thuộc \(\left( S \right)\), đỉnh cách \(\left( P \right)\) một khoảng lớn hơn \(2\). Kí hiệu \({V_1}\), \({V_2}\) lần lượt là thể tích của khối cầu \(\left( S \right)\) và khối nón \(\left( N \right)\). Tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\) là 

Xem đáp án

Thế tích khối cầu: \({V_1} = \dfrac{4}{3}\pi {R^3} = \dfrac{4}{3}\pi {.2^3} = \dfrac{{32\pi }}{3}\).

Do khối nón có đỉnh thuộc \(\left( S \right)\) và cách \(\left( P \right)\) một khoảng lớn hơn \(2\) nên có chiều cao \(SH = SO + OH = 2 + 1 = 3\).

Thể tích khối nón: \({V_2} = \dfrac{1}{3}\pi .H{B^2}.SH = \dfrac{1}{3}\pi .\left( {O{B^2} - O{H^2}} \right).3 = \pi .\left( {{2^2} - {1^2}} \right) = 3\pi \).

Vậy \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{32\pi }}{3}:3\pi  = \dfrac{{32}}{9}\).

Chọn D.

Câu 12: Trắc nghiệm ID: 150089

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({x^3} - 3mx + 2 = 0\) có nghiệm duy nhất. 

Xem đáp án

Xét phương trình \({x^3} - 3mx + 2 = 0\,\left( * \right)\) .

Nhận thấy \(x = 0\) không là nghiệm của \(\left( * \right)\) nên ta xét \(x \ne 0.\)

Khi đó \(\left( * \right) \Leftrightarrow {x^3} + 2 = 3mx \Rightarrow \dfrac{{{x^3}}}{x} + \dfrac{2}{x} = 3m \Leftrightarrow {x^2} + \dfrac{2}{x} = 3m\)

Xét hàm số \(y = {x^2} + \dfrac{2}{x}\,\left( {x \ne 0} \right) \Rightarrow y' = 2x - \dfrac{2}{{{x^2}}} = 0 \Leftrightarrow \dfrac{{{x^3} - 1}}{{{x^2}}} = 0 \Rightarrow {x^3} - 1 = 0 \Leftrightarrow x = 1 \Rightarrow y\left( 1 \right) = 3\)

Ta có BBT:

Từ BBT ta thấy để phương trình (*) có nghiệm duy nhất thì đường thẳng \(y = 3m\) cắt đồ thị hàm số \(y = {x^2} + \dfrac{2}{x}\) tại một điểm duy nhất nên \(3m < 3 \Leftrightarrow m < 1.\)

Chọn A

Câu 13: Trắc nghiệm ID: 150090

Cho hình chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B\), \(\widehat C = 60^\circ \), \(AC = 2\), \(SA \bot \left( {ABC} \right)\), \(SA = 1\). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách \(d\) giữa \(SM\) và \(BC\) là 

Xem đáp án

Gọi \(N\) là trung điểm của \(AC\), khi đó \(MN//BC \Rightarrow BC//\left( {SMN} \right)\).

Suy ra \(d\left( {SM,BC} \right) = d\left( {BC,\left( {SMN} \right)} \right) = d\left( {B,\left( {SMN} \right)} \right)\).

Mà \(BA \cap \left( {SMN} \right) = M,MA = MB\) nên \(d\left( {B,\left( {AMN} \right)} \right) = d\left( {A,\left( {AMN} \right)} \right)\).

Gọi \(H\) là hình chiếu của \(A\) lên \(SM\) \( \Rightarrow AH \bot SM\).

Lại có \(MN//BC \Rightarrow MN \bot AB\) và \(MN \bot SA\) \( \Rightarrow MN \bot \left( {SAB} \right) \Rightarrow MN \bot AH\).

Từ đó suy ra \(\left\{ \begin{array}{l}AH \bot SM\\AH \bot MN\end{array} \right. \Rightarrow AH \bot \left( {SMN} \right) \Rightarrow d\left( {A,\left( {SMN} \right)} \right) = AH\).

Ta tính \(AH\).

Tam giác \(ABC\) vuông tại \(B\) có \(\widehat C = {60^0}\) và \(AC = 2\) nên \(AB = AC\sin {60^0} = \sqrt 3  \Rightarrow AM = \dfrac{{\sqrt 3 }}{2}\).

Tam giác \(SAM\) vuông tại \(A\) có \(AH\) là đường cao \( \Rightarrow AH = \dfrac{{AS.AM}}{{SM}} = \dfrac{{AS.AM}}{{\sqrt {A{S^2} + A{M^2}} }} = \dfrac{{1.\dfrac{{\sqrt 3 }}{2}}}{{\sqrt {1 + \dfrac{3}{4}} }} = \dfrac{{\sqrt {21} }}{7}\).

Vậy \(d\left( {SM,BC} \right) = \dfrac{{\sqrt {21} }}{7}\).

Chọn A.

Câu 14: Trắc nghiệm ID: 150091

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \dfrac{{3\cos x - 1}}{{3 + \cos x}}\). Tổng \(M + m\) là 

Xem đáp án

Đặt \(\cos x = t\,\left( { - 1 \le t \le 1} \right)\)

Ta có \(y = \dfrac{{3t - 1}}{{3 + t}}\) \( \Rightarrow y' = \dfrac{6}{{{{\left( {3 + t} \right)}^2}}} > 0;\,\forall t \in \left[ { - 1;1} \right]\)

Suy ra \(\mathop {\min }\limits_{\left[ { - 1;1} \right]} y = y\left( { - 1} \right) = \dfrac{{3.\left( { - 1} \right) - 1}}{{3 + \left( { - 1} \right)}} =  - 2;\,\mathop {\max }\limits_{\left[ { - 1;1} \right]} y = y\left( 1 \right) = \dfrac{{3.1 - 1}}{{3 + 1}} = \dfrac{1}{2}\)

Hay \(m =  - 2;M = \dfrac{1}{2} \Rightarrow m + M =  - 2 + \dfrac{1}{2} =  - \dfrac{3}{2}.\)

Chọn D.

Câu 15: Trắc nghiệm ID: 150092

Cho hàm số \(y = a{x^4} + b{x^2} + c\) (\(a \ne 0\)) có đồ thị như hình vẽ dưới đây.

Mệnh đề nào dưới đây đúng?

Xem đáp án

Hàm số có \(\mathop {\lim }\limits_{x \to  \pm \infty } y =  - \infty \) nên \(a < 0\).

Đồ thị hàm số cắt trục tung tại điểm có tung độ âm nên \(c < 0\).

Hàm số có ba điểm cực trị nên \(ab < 0 \Rightarrow b > 0\) do \(a < 0\).

Vậy \(a < 0,b > 0,c < 0\).

Chọn A.

Câu 16: Trắc nghiệm ID: 150093

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = AD\sqrt 2 \), \(SA \bot \left( {ABC} \right)\). Gọi \(M\) là trung điểm của \(AB\). Góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SDM} \right)\) bằng 

Xem đáp án

Gọi \(K\) là giao điểm của \(AC\) và \(DM\).

Ta có \(AM = MB = \dfrac{{AB}}{2} = \dfrac{{AD\sqrt 2 }}{2}\) và \(BC = AD\)

Xét tam giác vuông \(ADM\) có \(\tan \widehat {ADM} = \dfrac{{AM}}{{AD}} = \dfrac{{\dfrac{{AD\sqrt 2 }}{2}}}{{AD}} = \dfrac{{\sqrt 2 }}{2}\)  (1)

Xét tam giác vuông \(ABC\) có \(\tan \widehat {BAC} = \dfrac{{BC}}{{AB}} = \dfrac{{AD}}{{AD\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}\) (2)

Từ (1) và (2) suy ra \(\tan \widehat {ADM} = \tan \widehat {BAC} \Rightarrow \widehat {ADM} = \widehat {BAC}\) 

mà  \(\widehat {ADM} + \widehat {AMD} = 90^\circ  \Rightarrow \widehat {BAC} + \widehat {AMK} = 90^\circ  \Rightarrow \widehat {AKM} = 90^\circ \) hay \(DM \bot AC\)  (3)

Lại có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AC\) (4)

Từ (3) và (4) suy ra \(AC \bot \left( {SDM} \right) \Rightarrow \left( {SAC} \right) \bot \left( {SDM} \right)\) nên góc giữa \(\left( {SAC} \right)\) và \(\left( {SDM} \right)\) bằng \(90^\circ .\)

Chọn B.

Câu 17: Trắc nghiệm ID: 150094

Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hai đường tròn \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) lần lượt có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 1\) và \({\left( {x + 1} \right)^2} + {y^2} = 1\). Biết đồ thị hàm số \(y = \dfrac{{ax + b}}{{x + c}}\) đi qua tâm của \(\left( {{C_1}} \right)\), đi qua tâm của \(\left( {{C_2}} \right)\) và có các đường tiệm cận tiếp xúc với cả \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\). Tổng \(a + b + c\) là 

Xem đáp án

Ta có đường tròn \(\left( {{C_1}} \right)\) có tâm \({I_1}\left( {1;2} \right)\) và bán kính \({R_1} = 1\)

Đường tròn \(\left( {{C_2}} \right)\) có tâm \({I_2}\left( { - 1;0} \right)\) và bán kính \({R_2} = 1\)

Đồ thị hàm số \(y = \dfrac{{ax + b}}{{x + c}}\) đi qua \({I_1};{I_2}\) nên ta có hệ \(\left\{ \begin{array}{l}\dfrac{{a + b}}{{1 + c}} = 2\\\dfrac{{ - a + b}}{{c - 1}} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a + b = 2c + 2\\ - a + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 2c + 2\\a = b\end{array} \right.\)

Đồ thị hàm số \(y = \dfrac{{ax + b}}{{x + c}}\) có TCĐ \(\Delta :x =  - c \Leftrightarrow x + c = 0\)

Vì \(\Delta \) tiếp xúc với cả \(\left( {{C_1}} \right);\left( {{C_2}} \right)\) nên \(\left\{ \begin{array}{l}d\left( {{I_1};\Delta } \right) = {R_1}\\d\left( {{I_2};\Delta } \right) = {R_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left| {1 + c} \right| = 1\\\left| { - 1 + c} \right| = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}c = 0\\c =  - 2\end{array} \right.\\\left[ \begin{array}{l}c = 0\\c = 2\end{array} \right.\end{array} \right. \Rightarrow c = 0\)

Với \(c = 0 \Rightarrow \left\{ \begin{array}{l}a + b = 2\\a = b\end{array} \right. \Rightarrow a = b = 1 \Rightarrow a + b + c = 0 + 1 + 1 = 2.\)

Chọn B.

Câu 18: Trắc nghiệm ID: 150095

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.

Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \(2f\left( x \right) + {x^2} > 4x + m\) nghiệm đúng với mọi \(x \in \left( { - 1;3} \right)\).

Xem đáp án

Ta có: \(2f\left( x \right) + {x^2} > 4x + m \Leftrightarrow f\left( x \right) > \dfrac{{ - {x^2} + 4x + m}}{2}\)

Bất phương trình nghiệm đúng với mọi \(x \in \left( { - 1;3} \right)\) \( \Leftrightarrow f\left( x \right) > \dfrac{{ - {x^2} + 4x + m}}{2},\forall x \in \left( { - 1;3} \right)\)

\( \Leftrightarrow g\left( x \right) = \dfrac{{ - {x^2} + 4x + m}}{2} < \mathop {\min }\limits_{\left( { - 1;3} \right)} f\left( x \right) =  - 3,\forall x \in \left( { - 1;3} \right)\) hay \(\dfrac{{ - {x^2} + 4x + m}}{2} <  - 3,\forall x \in \left( { - 1;3} \right)\)

\( \Leftrightarrow  - {x^2} + 4x + m <  - 6,\forall x \in \left( { - 1;3} \right) \Leftrightarrow m < {x^2} - 4x - 6,\forall x \in \left( { - 1;3} \right) \Leftrightarrow m < \mathop {\min }\limits_{\left( { - 1;3} \right)} h\left( x \right)\) với \(h\left( x \right) = {x^2} - 4x + 6\).

Xét \(h\left( x \right) = {x^2} - 4x + 6\) trên \(\left( { - 1;3} \right)\) có \(h'\left( x \right) = 2x - 4 = 0 \Leftrightarrow x = 2 \in \left( { - 1;3} \right)\).

Bảng biến thiên:

Do đó \(m <  - 10\).

Chọn B.

Câu 19: Trắc nghiệm ID: 150096

Cho \(x \in \left( {0;\dfrac{\pi }{2}} \right)\). Biết \(\log \sin x + \log \cos x =  - 1\) và \(\log \left( {\sin x + \cos x} \right) = \dfrac{1}{2}\left( {\log n - 1} \right)\). Giá trị của \(n\) là 

Xem đáp án

Ta có: \(\log \sin x + \log \cos x =  - 1\) \( \Leftrightarrow \log \left( {\sin x\cos x} \right) =  - 1\) \( \Leftrightarrow \sin x\cos x = \dfrac{1}{{10}}\)

\(\log \left( {\sin x + \cos x} \right) = \dfrac{1}{2}\left( {\log n - 1} \right)\)\( \Leftrightarrow 2\log \left( {\sin x + \cos x} \right) = \log n - 1\) \( \Leftrightarrow \log {\left( {\sin x + \cos x} \right)^2} = \log \dfrac{n}{{10}}\)\( \Leftrightarrow \log \left( {1 + 2\sin x\cos x} \right) = \log \dfrac{n}{{10}}\) \( \Leftrightarrow 1 + 2\sin x\cos x = \dfrac{n}{{10}}\)\( \Rightarrow 1 + 2.\dfrac{1}{{10}} = \dfrac{n}{{10}} \Leftrightarrow n = 12\).

Chọn B

Câu 20: Trắc nghiệm ID: 150097

Cho tứ diện \(ABCD\). Trên các cạnh \(AB\),\(BC\), \(CA\), \(AD\) lần lượt lấy 3; 4; 5; 6 điểm phân biệt khác các điểm \(A\), \(B\), \(C\), \(D\). Số tam giác phân biệt có các đỉnh là các điểm vừa lấy là 

Xem đáp án

TH1: Tam giác được tạo thành từ \(2\) điểm thuộc một cạnh và điểm thứ ba thuộc một trong ba cạnh còn lại.

Có \(C_3^2.\left( {4 + 5 + 6} \right) + C_4^2.\left( {3 + 5 + 6} \right) + C_5^2.\left( {3 + 4 + 6} \right) + C_6^2\left( {3 + 4 + 5} \right) = 439\) tam giác.

TH2: Tam giác được tạ thành từ ba đỉnh thuộc ba cạnh khác nhau.

Có \(C_3^1.C_4^1.C_5^1 + C_3^1.C_4^1.C_6^1 + C_3^1.C_5^1.C_6^1 + C_4^1.C_5^1.C_6^1 = 342\) tam giác.

Vậy có \(439 + 342 = 781\) tam giác.

Chọn A.

Câu 21: Trắc nghiệm ID: 150098

Cho hình chóp đều \(S.ABC\) có độ dài cạnh đáy bằng \(2\), điểm \(M\) thuộc cạnh \(SA\) sao cho \(SA = 4SM\) và \(SA\) vuông góc với mặt phẳng \(\left( {MBC} \right)\). Thể tích \(V\) của khối chóp \(S.ABC\) là 

Xem đáp án

Gọi độ dài cạnh bên của hình chóp đều \(S.ABC\) là \(SA = SB = SC = 4x\left( {x > 0} \right)\) khi đó vì \(SA = 4SM \Rightarrow SM = x;AM = 3x.\)

Gọi \(D\) là trung điểm \(BC\) suy ra \(AD = \dfrac{{2\sqrt 3 }}{2} = \sqrt 3 \) (đường trung tuyến trong tam giác \(ABC\) đều cạnh \(2\)) và \(DC = \dfrac{{CB}}{2} = 1.\)

Vì \(SA \bot \left( {MBC} \right) \Rightarrow \left\{ \begin{array}{l}SA \bot MC\\SA \bot MD\end{array} \right.\)

Xét tam giác \(AMD\) vuông tại \(M\), ta có \(M{D^2} = A{D^2} - A{M^2} = {\left( {\sqrt 3 } \right)^2} - {\left( {3x} \right)^2} = 3 - 9{x^2}\)

Xét tam giác \(SBC\) cân tại \(S \Rightarrow SD \bot BC\) nên theo định lý Pytago cho tam giác vuông \(SDC\) ta có \(S{D^2} = S{C^2} - C{D^2} = {\left( {4x} \right)^2} - {1^2} = 16{x^2} - 1\)

Xét tam giác \(SMD\) vuông tại \(M\) có

\(S{D^2} = M{D^2} + M{S^2} \Leftrightarrow 16{x^2} - 1 = 3 - 9{x^2} + {x^2} \Leftrightarrow 24{x^2} = 4 \Leftrightarrow {x^2} = \dfrac{1}{6} \Rightarrow x = \dfrac{1}{{\sqrt 6 }}\)

Suy ra \(SM = \dfrac{1}{{\sqrt 6 }};M{D^2} = 3 - 9.\dfrac{1}{6} = \dfrac{3}{2} \Rightarrow MD = \dfrac{{\sqrt 6 }}{2}\)

Ta có \(SA \bot BC;AD \bot BC \Rightarrow BC \bot \left( {SAD} \right) \Rightarrow BC \bot MD\)  nên \({S_{\Delta MBC}} = \dfrac{1}{2}.MD.BC = \dfrac{1}{2}.\dfrac{{\sqrt 6 }}{2}.2 = \dfrac{{\sqrt 6 }}{2}\)

\({V_{S.MBC}} = \dfrac{1}{3}.SM.{S_{\Delta MBC}} = \dfrac{1}{3}.\dfrac{1}{{\sqrt 6 }}.\dfrac{{\sqrt 6 }}{2} = \dfrac{1}{6}.\)

Ta có \(\dfrac{{{V_{S.MBC}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SB}}{{SB}}.\dfrac{{SC}}{{SC}} = \dfrac{1}{4} \Leftrightarrow {V_{S.ABC}} = 4V = 4.\dfrac{1}{6} = \dfrac{2}{3}.\)

Chọn A

Câu 22: Trắc nghiệm ID: 150099

Cho hình trụ có hai đáy là hai hình tròn \(\left( {O;R} \right)\) và \(\left( {O';R} \right)\). \(AB\) là một dây cung của đường tròn \(\left( {O;R} \right)\) sao cho tam giác \(O'AB\) là tam giác đều và mặt phẳng \(\left( {O'AB} \right)\) tạo với mặt phẳng chứa đường tròn \(\left( {O;R} \right)\) một góc \(60^\circ \). Tính theo \(R\) thể tích \(V\) của khối trụ đã cho. 

Xem đáp án

Gọi \(I\) là trung điểm của \(AB\) thì \(O'I \bot AB,OI \bot AB\).

Suy ra góc giữa \(\left( {O'AB} \right)\) và \(\left( {O;R} \right)\) là góc giữa \(O'I\) và \(OI\) hay \(\widehat {O'IO} = {60^0}\).

Đặt \(AI = x \Rightarrow AB = 2x\).

Tam giác vuông \(OIA\) có \(OA = R,AI = x\) \( \Rightarrow OI = \sqrt {O{A^2} - A{I^2}}  = \sqrt {{R^2} - {x^2}} \).

Tam giác \(O'AB\) đều cạnh \(AB = 2x \Rightarrow O'I = \dfrac{{2x\sqrt 3 }}{2} = x\sqrt 3 \).

Tam giác \(O'OI\) vuông tại \(O\) nên \(\cos {60^0} = \dfrac{{OI}}{{O'I}} \Leftrightarrow \dfrac{1}{2} = \dfrac{{\sqrt {{R^2} - {x^2}} }}{{x\sqrt 3 }} \Leftrightarrow x = \dfrac{{2R}}{{\sqrt 7 }}\).

Suy ra \(OO' = O'I.\sin {60^0} = \dfrac{{2R}}{{\sqrt 7 }}.\sqrt 3 .\dfrac{{\sqrt 3 }}{2} = \dfrac{{3R}}{{\sqrt 7 }}\).

Thể tích khối trụ \(V = \pi {R^2}h = \pi {R^2}.\dfrac{{3R}}{{\sqrt 7 }} = \dfrac{{3\pi \sqrt 7 {R^3}}}{7}\).

Chọn D.

Câu 23: Trắc nghiệm ID: 150100

Biết \({\log _2}\left( {\sum\limits_{k = 1}^{100} {\left( {k \times {2^k}} \right)}  - 2} \right) = a + {\log _c}b\) với \(a\),\(b\),\(c\) là các số nguyên và \(a > b > c > 1\). Tổng \(a + b + c\) là 

Xem đáp án

Ta có \(M = \sum\limits_{k = 1}^{100} {\left( {k{{.2}^k}} \right) - 2 = {{1.2}^1} + {{2.2}^2} + {{3.2}^3} + ... + {{100.2}^{100}} - 2} \) \( = {2.2^2} + {3.2^3} + ... + {100.2^{100}}\)

Suy ra \(2M = 2.\left( {{{2.2}^2} + {{3.2}^3} + ... + {{100.2}^{100}}} \right) \) \(= {2.2^3} + {3.2^4} + {4.2^5} + ... + {100.2^{101}}\)

Suy ra \(M = 2M - M \) \(= {2.2^3} + {3.2^4} + ... + {100.2^{101}} - \left( {{{2.2}^2} + {{3.2}^3} + ... + {{100.2}^{100}}} \right)\)

\( = {100.2^{101}} - {2^3} - {2^3} - {2^4} - {2^5} - ... - {2^{100}} \) \(= {100.2^{101}} - \left( {{2^3} + {2^4} + {2^5} + ... + {2^{100}}} \right) - {2^3}\)

Xét tổng \({2^3} + {2^4} + ... + {2^{100}}\)  là tổng của \(98\) số hạng của cấp số nhân có \({u_1} = {2^3}\) và công bội \(q = 2.\)

Nên \({2^3} + {2^4} + ... + {2^{100}} = {2^3}.\dfrac{{1 - {2^{98}}}}{{1 - 2}} = {2^{101}} - {2^3}\)

Suy ra \(M = {100.2^{101}} - \left( {{2^{101}} - {2^3}} \right) - {2^3} \) \(= {99.2^{101}}\)

Từ đó \({\log _2}\left( {{{99.2}^{101}}} \right) \) \(= {\log _2}99 + {\log _2}{2^{101}} \) \(= 101 + {\log _2}99\) \( \Rightarrow a = 101;b = 99;c = 2 \Rightarrow a + b + c = 202.\)

Chọn B

Câu 24: Trắc nghiệm ID: 150101

Số giá trị nguyên của tham số \(m\) nằm trong khoảng \(\left( {0;2020} \right)\) để phương trình \(\left| {\left| {x - 1} \right| - \left| {2019 - x} \right|} \right| = 2020 - m\) có nghiệm là 

Xem đáp án

+) Với \(x \le 1\) thì \(y = \left| {\left| {x - 1} \right| - \left| {2019 - x} \right|} \right| = \left| {\left( {1 - x} \right) - \left( {2019 - x} \right)} \right| = 2018\).

+) Với \(x \ge 2019\) thì \(y = \left| {\left| {x - 1} \right| - \left| {2019 - x} \right|} \right| = \left| {\left( {x - 1} \right) - \left( {x - 2019} \right)} \right| = 2018\).

+) Với \(1 < x < 2019\) thì:\(y = \left| {\left| {x - 1} \right| - \left| {2019 - x} \right|} \right| = \left| {x - 1 - 2019 + x} \right|\) \( = \left| {2x - 2020} \right| = \left\{ \begin{array}{l}2x - 2020\,\,\,\,\,khi\,\,1010 \le x < 2019\\ - 2x + 2020\,\,khi\,\,1 < x < 1010\end{array} \right.\)

Do đó \(y = \left\{ \begin{array}{l}2018\,\,khi\,\,x \le 1\\ - 2x + 2020\,\,khi\,\,1 < x < 1010\\2x - 2020\,\,\,\,\,khi\,\,1010 \le x < 2019\\2018\,\,khi\,\,x \ge 2019\end{array} \right.\)

Vẽ dáng đồ thị hàm số ta được:

Từ hình vẽ ta thấy phương trình đã cho có nghiệm nếu đường thẳng \(y = 2020 - m\) cắt đồ thị hàm số trên tại ít nhất một điểm hay \(0 \le 2020 - m \le 2018 \Leftrightarrow 2 \le m \le 2020\)

Mà \(m \in \left( {0;2020} \right)\) nên \(2 \le m < 2020 \Rightarrow m \in \left\{ {2;3;...;2019} \right\}\).

Có \(\left( {2019 - 2} \right):1 + 1 = 2018\) giá trị của \(m\) thỏa mãn bài toán.

Chọn D

Câu 25: Trắc nghiệm ID: 150102

Một cái hộp có dạng hình hộp chữ nhật có thể tích bằng \(48\) và chiều dài gấp đôi chiều rộng. Chất liệu làm đáy và 4 mặt bên của hộp có giá thành gấp ba lần giá thành của chất liệu làm nắp hộp. Gọi \(h\) là chiều cao của hộp để giá thành của hộp là thấp nhất. Biết \(h = \dfrac{m}{n}\) với \(m\), \(n\) là các số nguyên dương nguyên tố cùng nhau. Tổng \(m + n\) là 

Xem đáp án

Gọi chiều rộng của nắp hộp là \(x\)  và giá thành 1 đơn vị diện tích làm nắp hộp là \(a\) (cố định).

Khi đó giá thành làm 1 đơn vị diện tích mặt bên là \(3a.\)

Chiều dài nắp hộp là \(2x\) nên thể tích hình hộp chữ nhật là \(V = x.2x.h = 48 \Leftrightarrow h = \dfrac{{24}}{{{x^2}}}\)

Số tiền làm  nắp hộp là \(x.2x.a = 2{x^2}.a\)

Số tiền lằm làm mặt bên và đáy là \(3a\left( {2.x.h + 2.2x.h + 2x.x} \right) = 3a\left( {6xh + 2{x^2}} \right)\)

Tổng số tiền làm hộp là \(M = 3a\left( {6xh + 2{x^2}} \right) + 2{x^2}.a = 18a.x.h + 8{x^2}.a = 18a.x.\dfrac{{24}}{{{x^2}}} + 8{x^2}.a\) (vì \(h = \dfrac{{24}}{{{x^2}}}\))

Nên \(M = 8a\left( {\dfrac{{54}}{{{x^2}}} + {x^2}} \right) = 8a\left( {\dfrac{{27}}{x} + \dfrac{{27}}{x} + {x^2}} \right)\mathop  \ge \limits^{Co  - si} 8a.3.\sqrt[3]{{\dfrac{{27}}{x}.\dfrac{{27}}{x}.{x^2}}} = 216a.\)

Dấu = xảy ra khi \(\dfrac{{27}}{x} = {x^2} \Rightarrow {x^3} = 27 \Rightarrow x = 3 \Rightarrow h = \dfrac{{24}}{{{x^2}}} = \dfrac{{24}}{9} = \dfrac{8}{3}.\)

Vậy \({M_{\min }} = 216a \Leftrightarrow h = \dfrac{8}{3}\) nên \(m = 8;n = 3 \Rightarrow m + n = 8 + 3 = 11.\)

Chọn C

Câu 26: Trắc nghiệm ID: 150103

Cho hàm số \(f\left( x \right) = m{x^4} + n{x^3} + p{x^2} + qx + r\) \(\left( {m \ne 0} \right)\). Chia \(f\left( x \right)\) cho \(x - 2\) được phần dư bằng \(2019\), chia \(f'\left( x \right)\) cho \(x - 2\) được phần dư bằng 2018. Gọi \(g\left( x \right)\) là phần dư khi chia \(f\left( x \right)\) cho \({\left( {x - 2} \right)^2}\). Giá trị của \(g\left( { - 1} \right)\) là

Xem đáp án

Do \(f\left( x \right)\) chia cho \(\left( {x - 2} \right)\) được phần dư là \(2019\) nên ta viết lại:

\(f\left( x \right) = m{\left( {x - 2} \right)^4} + a{\left( {x - 2} \right)^3} + b{\left( {x - 2} \right)^2} + c\left( {x - 2} \right) + 2019\)

\(f'\left( x \right) = 4m{\left( {x - 2} \right)^3} + 3a{\left( {x - 2} \right)^2} + 2b\left( {x - 2} \right) + c\)

Do \(f'\left( x \right)\) chia cho \(\left( {x - 2} \right)\) dư \(2018\) nên \(c = 2018\).

Suy ra \(f\left( x \right) = m{\left( {x - 2} \right)^4} + a{\left( {x - 2} \right)^3} + b{\left( {x - 2} \right)^2} + 2018\left( {x - 2} \right) + 2019\)

Từ đó phần dư khi chia \(f\left( x \right)\) cho \({\left( {x - 2} \right)^2}\) là \(g\left( x \right) = 2018\left( {x - 2} \right) + 2019\).

Vậy \(g\left( { - 1} \right) = 2018.\left( { - 1 - 2} \right) + 2019 =  - 4035\).

Chọn B

Câu 27: Trắc nghiệm ID: 150104

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\), cạnh bên bằng \(\sqrt 2 a\). Độ lớn của góc giữa đường thẳng \(SA\) và mặt phẳng đáy bằng: 

Xem đáp án

Gọi O là tâm của hình vuông ABCD. Do S.ABCD là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right)\)

 \( \Rightarrow \widehat {\left( {SA;\left( {ABCD} \right)} \right)} = \widehat {\left( {SA;OA} \right)} = \widehat {SAO}\)

ABCD là hình vuông cạnh a  \( \Rightarrow AC = a\sqrt 2  \Rightarrow OA = \dfrac{{a\sqrt 2 }}{2}\)

\(\Delta SAO\) vuông tại O \( \Rightarrow \cos \widehat {SAO} = \dfrac{{OA}}{{SA}} = \dfrac{{\dfrac{{a\sqrt 2 }}{2}}}{{a\sqrt 2 }} = \dfrac{1}{2} \Rightarrow \widehat {SAO} = {60^0}\)\( \Rightarrow \left( {\widehat {SA;\left( {ABCD} \right)}} \right) = {60^0}\).

Chọn: D

Câu 28: Trắc nghiệm ID: 150105

Hình vẽ là đồ thị của hàm số:

Xem đáp án

Đồ thị hàm số đã cho có TCĐ: \(x =  - 1\) và TCN: \(y = 1\). 

\( \Rightarrow \) Loại phương án A và D

Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3 \( \Rightarrow \) Loại phương án B, chọn phương án C

Chọn: C

Câu 29: Trắc nghiệm ID: 150106

Đường thẳng \(\left( \Delta  \right)\) là giao của hai mặt phẳng \(x + z - 5 = 0\) và \(x - 2y - z + 3 = 0\) thì có phương trình là: 

Xem đáp án

Mặt phẳng \(x + z - 5 = 0\), \(x - 2y - z + 3 = 0\) có VTPT lần lượt là \(\overrightarrow {{n_1}} \left( {1;0;1} \right),\,\,\overrightarrow {{n_2}} \left( {1; - 2; - 1} \right)\).

Đường thẳng \(\Delta \) là giao của hai mặt phẳng \(x + z - 5 = 0\) và \(x - 2y - z + 3 = 0\) có 1 VTCP là: \(\overrightarrow u  = \dfrac{1}{2}\left[ {\overrightarrow {{n_1}} ;\,\,\overrightarrow {{n_2}} } \right] = \left( {1;1; - 1} \right)\)

Cho \(x = 2 \Rightarrow \left\{ \begin{array}{l}2 + z - 5 = 0\\2 - 2y - z + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}z = 3\\y = 1\end{array} \right. \Rightarrow A\left( {2;1;3} \right) \in \Delta \)

Phương trình đường thẳng là: \(\dfrac{{x - 2}}{1} = \dfrac{{y - 1}}{1} = \dfrac{{z - 3}}{{ - 1}}\) .

Chọn: C

Câu 30: Trắc nghiệm ID: 150107

Mặt phẳng \(\left( P \right)\) đi qua \(A\left( {3;0;0} \right),\,\,B\left( {0;0;4} \right)\) và song song trục \(Oy\) có phương trình: 

Xem đáp án

Ta có: \(\overrightarrow {AB}  = \left( { - 3;0;4} \right)\)

Theo đề bài, ta có: mặt phẳng (P) có 1 VTPT:  \(\overrightarrow n  = \left[ {\overrightarrow {AB} ;\overrightarrow j } \right] = \left( { - 4;0; - 3} \right)\)

Phương trình mặt phẳng (P): \( - 4\left( {x - 3} \right) - 3\left( {z - 0} \right) = 0 \Leftrightarrow 4x + 3z - 12 = 0\).

Chọn: A

Câu 31: Trắc nghiệm ID: 150108

Cho lăng trụ đều \(ABC.A'B'C'\) có \(AB = 2\sqrt 3 ,\,\,BB' = 2\).Gọi \(M,\,\,N,\,\,P\) tương ứng là trung điểm của   \(A'B',\,\,A'C',\,\,BC\). Nếu gọi \(\alpha \) là độ lớn của góc của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ACC'} \right)\)  thì \(\cos \alpha \) bằng:

Xem đáp án

Ta có: \(\left( {MNP} \right) \equiv \left( {MNCP} \right)\) (do \(CP//B'C'//MN\)) và \(\left( {ACC'} \right) \equiv \left( {ACC'A'} \right)\) \( \Rightarrow \alpha  = \widehat {\left( {\left( {MNP} \right);\left( {ACC'} \right)} \right)} = \widehat {\left( {\left( {MNCP} \right);\left( {ACC'A'} \right)} \right)}\)

Dựng \(PE \bot AC,\,\,MF \bot A'C',\,\,\left( {E \in AC;\,F \in A'C'} \right)\) \( \Rightarrow CE = FN = \dfrac{1}{4}AC\) và \(P,E,F,M\) đồng phẳng

Ta có:  \(PE \bot AC,\,\,PE \bot AA' \Rightarrow PE \bot \left( {ACC'A'} \right) \Rightarrow \left( {PEFM} \right) \bot \left( {ACC'A'} \right)\)

\( \Rightarrow \) Hình chiếu vuông góc của hình bình hành lên \(\left( {ACC'A'} \right)\) là hình bình hành \(ECNF\)\( \Rightarrow \cos \alpha  = \dfrac{{{S_{ECNF}}}}{{{S_{MNCP}}}}\)

Ta có: \({S_{ECNF}} = EC.CC' = \dfrac{1}{4}.AC.CC' = \dfrac{1}{4}.2\sqrt 3 .2 = \sqrt 3 \); 

\(\Delta A'B'C'\) đều  \( \Rightarrow C'M = 2\sqrt 3 .\dfrac{{\sqrt 3 }}{2} = 3\)

\(\Delta CC'M\) vuông tại C’  \( \Rightarrow CM = \sqrt {CC{'^2} + C'{M^2}}  = \sqrt {{2^2} + {3^2}}  = \sqrt {13} \) 

\(\Delta CC'N\) vuông tại C’  \( \Rightarrow CN = \sqrt {CC{'^2} + C'{N^2}}  = \sqrt {{2^2} + {{\sqrt 3 }^2}}  = \sqrt 7 \)

\(\Delta MNC\) có: \(MN = \sqrt 3 ,\,\,CM = \sqrt {13} ,\,\,CN = \sqrt 7 \), có diện tích là: \({S_{MNC}} = \sqrt {p.\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)

\( = \sqrt {\dfrac{{\sqrt 3  + \sqrt 7  + \sqrt {13} }}{2}.\left( {\dfrac{{\sqrt 3  + \sqrt 7  + \sqrt {13} }}{2} - \sqrt 3 } \right)\left( {\dfrac{{\sqrt 3  + \sqrt 7  + \sqrt {13} }}{2} - \sqrt 7 } \right)\left( {\dfrac{{\sqrt 3  + \sqrt 7  + \sqrt {13} }}{2} - \sqrt {13} } \right)} \)

\( = \sqrt {\dfrac{{\sqrt 3  + \sqrt 7  + \sqrt {13} }}{2}.\dfrac{{\sqrt 7  + \sqrt {13}  - \sqrt 3 }}{2}.\dfrac{{\sqrt 3  + \sqrt {13}  - \sqrt 7 }}{2}.\dfrac{{\sqrt 3  + \sqrt 7  - \sqrt {13} }}{2}}  = \dfrac{{5\sqrt 3 }}{4}\) \( \Rightarrow {S_{MNCP}} = \dfrac{{5\sqrt 3 }}{2}\)

\( \Rightarrow \cos \alpha  = \dfrac{{{S_{ECNF}}}}{{{S_{MNCP}}}} = \dfrac{{\sqrt 3 }}{{\dfrac{{5\sqrt 3 }}{2}}} = \dfrac{2}{5}\).

Chọn: B

Câu 32: Trắc nghiệm ID: 150109

Lăng trụ có chiều cao bằng \(a\), đáy là tam giác vuông cân và có thể tích bằng \(2{a^3}\). Cạnh góc vuông của đáy lăng trụ bằng 

Xem đáp án

Thể tích hình lăng trụ: \(V = Sh \Leftrightarrow 2{a^3} = {S_{day}}.a \Leftrightarrow {S_{day}} = 2{a^2}\)

Gọi độ dài cạnh góc vuông của đáy là \(x \Rightarrow \dfrac{1}{2}{x^2} = 2{a^2} \Leftrightarrow {x^2} = 4{a^2} \Leftrightarrow x = 2a\).

Chọn: B

Câu 33: Trắc nghiệm ID: 150110

Tổng các nghiệm của phương trình \({4^x} - {6.2^x} + 2 = 0\) bằng: 

Xem đáp án

Đặt \({2^x} = t,\,\,t > 0\). Phương trình trở thành: \({t^2} - 6t + 2 = 0\) (2)

Phương trình (2) có 2 nghiệm \({t_1},{t_2}\) thỏa mãn \({t_1}.{t_2} = 2\).

Khi đó, (1) có 2 nghiệm phân biệt \({x_1},\,{x_2}\) tương ứng, thỏa mãn:  \({2^{{x_1} + {x_2}}} = {2^{{x_1}}}{.2^{{x_2}}} = {t_1}.{t_2} = 2 \Rightarrow {x_1} + {x_2} = 1\).

Chọn: B

Câu 34: Trắc nghiệm ID: 150111

Xét các số phức \(z\) thỏa mãn  \(\left| {z - 1 - 3i} \right| = 2\). Số phức \(z\) mà \(\left| {z - 1} \right|\) nhỏ nhất là: 

Xem đáp án

Tập hợp các điểm M biểu diễn của các số phức thỏa mãn \(\left| {z - 1 - 3i} \right| = 2\) là đường tròn: \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 4\)

 là khoảng cách từ điểm M đến điểm \(A\left( {1;0} \right)\). Khoảng cách này nhỏ nhất khi và chỉ khi M nằm giữa I và A (với \(I\left( {1;3} \right)\) là tâm đường tròn \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 4\))

 Dễ dàng tính được \(M\left( {1;1} \right)\).

Vậy, số phức z thỏa mãn là \(z = 1 + i\).

Chọn: B

Câu 35: Trắc nghiệm ID: 150112

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{e^x} + m\,\,\,khi\,\,x \ge 0\\2x\sqrt {3 + {x^2}} \,\,khi\,\,x < 0\end{array} \right.\) liên tục trên  và \(\int\limits_{ - 1}^1 {f\left( x \right)dx}  = ae + b\sqrt 3  + c\), \(\left( {a,b,c \in \mathbb{Q}} \right)\). Tổng \(T = a + b + 3c\) bằng: 

Xem đáp án

Hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\)  \( \Leftrightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to {0^ + }} \left( {{e^x} + m} \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {2x\sqrt {3 + {x^2}} } \right) \Leftrightarrow 1 + m = 0 \Leftrightarrow m =  - 1\)

Khi đó:

\(\begin{array}{l}\int\limits_{ - 1}^1 {f\left( x \right)dx}  = \int\limits_{ - 1}^0 {f\left( x \right)dx}  + \int\limits_0^1 {f\left( x \right)dx} \\ = \int\limits_{ - 1}^0 {2x\sqrt {3 + {x^2}} dx}  + \int\limits_0^1 {\left( {{e^x} - 1} \right)dx}  = \int\limits_{ - 1}^0 {\sqrt {3 + {x^2}} d\left( {3 + {x^2}} \right)}  + \left. {\left( {{e^x} - x} \right)} \right|_0^1\\ = \left. {\dfrac{2}{3}\left( {3 + {x^2}} \right)\sqrt {3 + {x^2}} } \right|_{ - 1}^0 + \left. {\left( {{e^x} - x} \right)} \right|_0^1 = \dfrac{2}{3}.3.\sqrt 3  - \dfrac{2}{3}.4.2 + \left( {e - 1 - 1} \right) = e + 2\sqrt 3  - \dfrac{{22}}{3}\\ \Rightarrow a = 1,\,\,b = 2,\,\,c =  - \dfrac{{22}}{3} \Rightarrow T = a + b + 3c = 1 + 2 - 22 =  - 19\end{array}\)

Chọn: C

Câu 36: Trắc nghiệm ID: 150113

Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(2\)và cạnh bên bằng \(2\sqrt 2 \). Gọi \(\alpha \)là góc của mặt phẳng \(\left( {SAC} \right)\) và mặt phẳng \(\left( {SAB} \right)\). Khi đó \(\cos \alpha \) bằng:

Xem đáp án

Gọi O là tâm của hình vuông ABCD.

Do \(\left\{ \begin{array}{l}OB \bot AC\\OB \bot SO\end{array} \right. \Rightarrow OB \bot \left( {SAC} \right) \Rightarrow \) Hình chiếu vuông góc của tam giác SAB lên (SAC) là tam giác SAO

Khi đó, \(\cos \alpha  = \cos \left( {\widehat {\left( {SAB} \right);\left( {SAC} \right)}} \right) = \dfrac{{{S_{SAO}}}}{{{S_{SAB}}}}\)

Ta có:

\(\Delta SOA\) vuông tại O :

\({S_{SAB}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)

\( = \sqrt {\dfrac{{2 + 2\sqrt 2  + 2\sqrt 2 }}{2}.\left( {\dfrac{{2 + 2\sqrt 2  + 2\sqrt 2 }}{2} - 2} \right)\left( {\dfrac{{2 + 2\sqrt 2  + 2\sqrt 2 }}{2} - 2\sqrt 2 } \right)\left( {\dfrac{{2 + 2\sqrt 2  + 2\sqrt 2 }}{2} - 2\sqrt 2 } \right)} \)

\( = \sqrt {\left( {1 + 2\sqrt 2 } \right).\left( {2\sqrt 2  - 1} \right).1.1}  = \sqrt 7 \)

\( \Rightarrow \cos \alpha  = \dfrac{{{S_{SAO}}}}{{{S_{SAB}}}} = \dfrac{{\sqrt 3 }}{{\sqrt 7 }} = \dfrac{{\sqrt {21} }}{7}\).

Chọn: C

Câu 37: Trắc nghiệm ID: 150114

Trong không gian \(Oxyz\), cho \(A\left( {2;0;0} \right),\,\,B\left( {0;4;0} \right),\,\,C\left( {0;0;6} \right),\,\,D\left( {2;4;6} \right)\). Gọi \(\left( P \right)\) là mặt phẳng song song với \(mp\left( {ABC} \right)\), \(\left( P \right)\) cách đều \(D\) và mặt phẳng \(\left( {ABC} \right)\). Phương trình của \(\left( P \right)\) là: 

Xem đáp án

Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(\dfrac{x}{2} + \dfrac{y}{4} + \dfrac{z}{6} = 1 \Leftrightarrow 6x + 3y + 2z - 12 = 0\)

 \(//\left( {ABC} \right) \Rightarrow \left( P \right):\) \(6x + 3y + 2z + m = 0,\,\left( {m \ne  - 12} \right)\)

\(d\left( {D;\left( P \right)} \right) = \dfrac{{\left| {6.2 + 3.4 + 2.6 + m} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} }} = \dfrac{{\left| {36 + m} \right|}}{7}\)

\(d\left( {\left( {ABC} \right);\left( P \right)} \right) = d\left( {A;\left( P \right)} \right) = \dfrac{{\left| {6.2 + 3.0 + 2.0 + m} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} }} = \dfrac{{\left| {12 + m} \right|}}{7}\) (do \(\left( P \right)//\left( {ABC} \right)\))

Theo đề bài, ta có:

\(\dfrac{{\left| {36 + m} \right|}}{7} = \dfrac{{\left| {12 + m} \right|}}{7} \Leftrightarrow \left| {36 + m} \right| = \left| {12 + m} \right| \Leftrightarrow \left[ \begin{array}{l}36 + m = 12 + m\,\,\left( {vo\,\,nghiem} \right)\\36 + m =  - 12 - m\end{array} \right. \Leftrightarrow m =  - 24\,\,\left( {tm} \right)\)

Vậy, \(\left( P \right):6x + 3y + 2z - 24 = 0\).

Chọn: A

Câu 38: Trắc nghiệm ID: 150115

Số nào sau đây là điểm cực đại của hàm số \(y = {x^4} - 2{x^3} + {x^2} + 2\)?

Xem đáp án

Ta có:  \( \Rightarrow y' = 4{x^3} - 6{x^2} + 2x\), \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = \dfrac{1}{2}\end{array} \right.\)

Bảng xét dấu y’:

Ta thấy: \(y'\)  đổi dấu từ dương sang âm tại 1 điểm là \(x = \dfrac{1}{2}\)

Chọn: A

Câu 39: Trắc nghiệm ID: 150116

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\), \(f\left( 0 \right) = 0,\,\,f'\left( 0 \right) \ne 0\) và thỏa mãn hệ thức\(f\left( x \right)/f'\left( x \right) + 18{x^2} = \left( {3{x^2} + x} \right)f'\left( x \right) + \left( {6x + 1} \right)f\left( x \right)\,\,\forall x \in \mathbb{R}\). Biết \(\int\limits_0^1 {\left( {x + 1} \right){e^{f\left( x \right)}}dx}  = a{e^2} + b\,\,\left( {a,\,\,b \in \mathbb{Q}} \right)\). Giá trị của \(a - b\) bằng: 

Xem đáp án

Ta có :

\(\begin{array}{l}
f\left( x \right).f'\left( x \right) + 18{x^2} = \left( {3{x^2} + x} \right)f'\left( x \right) + \left( {6x + 1} \right)f\left( x \right)\\
\begin{array}{*{20}{l}}
{ \Rightarrow \int\limits_0^x {\left( {f\left( x \right).f'\left( x \right) + 18{x^2}} \right)} dx = \int\limits_0^x {\left( {\left( {3{x^2} + x} \right)f'\left( x \right) + \left( {6x + 1} \right)f\left( x \right)} \right)} dx}\\
{ \Leftrightarrow \int\limits_0^x {f\left( x \right).f'\left( x \right)} dx + \int\limits_0^x {18{x^2}} dx = \int\limits_0^x {{{\left( {\left( {3{x^2} + x} \right)f\left( x \right)} \right)}^\prime }} dx}\\
{ \Leftrightarrow \left. {\left( {\frac{1}{2}{{\left( {f\left( x \right)} \right)}^2} + 6{x^3}} \right)} \right|_0^x = \left. {\left( {\left( {3{x^2} + x} \right)f\left( x \right)} \right)} \right|_0^x}\\
{ \Leftrightarrow \left( {\frac{1}{2}{{\left( {f\left( x \right)} \right)}^2} + 6{x^3}} \right) - \left( {\frac{1}{2}{{\left( {f\left( 0 \right)} \right)}^2} + 0} \right) = \left( {3{x^2} + x} \right)f\left( x \right) - 0}\\
{ \Leftrightarrow {{\left( {f\left( x \right)} \right)}^2} - 2\left( {3{x^2} + x} \right)f\left( x \right) + 12{x^3} = 0}\\
{ \Leftrightarrow {{\left( {f\left( x \right)} \right)}^2} - 2\left( {3{x^2} + x} \right)f\left( x \right) + 12{x^3} = 0}\\
{ \Leftrightarrow {{\left( {f\left( x \right)} \right)}^2} - 2\left( {3{x^2} + x} \right)f\left( x \right) + {{\left( {3{x^2} + x} \right)}^2} = {{\left( {3{x^2} + x} \right)}^2} - 12{x^3}}\\
{ \Leftrightarrow {{\left( {f\left( x \right) - \left( {3{x^2} + x} \right)} \right)}^2} = {{\left( {3{x^2} - x} \right)}^2}}\\
{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{f\left( x \right) - \left( {3{x^2} + x} \right) = 3{x^2} - x}\\
{f\left( x \right) - \left( {3{x^2} + x} \right) =  - 3{x^2} + x}
\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{f\left( x \right) = 6{x^2}}\\
{f\left( x \right) = 2x}
\end{array}} \right.}
\end{array}
\end{array}\)

Do \(f\left( 0 \right) = 0,\,\,f'\left( 0 \right) \ne 0\) nên \(f\left( x \right) = 2x\). Khi đó:

 \(\begin{array}{l}\int\limits_0^1 {\left( {x + 1} \right){e^{f\left( x \right)}}dx = } \int\limits_0^1 {\left( {x + 1} \right){e^{2x}}dx = \dfrac{1}{2}} \int\limits_0^1 {\left( {x + 1} \right)d\left( {{e^{2x}}} \right)} \\ = \left. {\dfrac{1}{2}\left( {x + 1} \right).{e^{2x}}} \right|_0^1 - \dfrac{1}{2}\int\limits_0^1 {{e^{2x}}d\left( {x + 1} \right)}  = \left. {\dfrac{1}{2}\left( {x + 1} \right).{e^{2x}}} \right|_0^1 - \dfrac{1}{2}\int\limits_0^1 {{e^{2x}}dx} \\ = \left. {\dfrac{1}{2}\left( {x + 1} \right).{e^{2x}}} \right|_0^1 - \left. {\dfrac{1}{4}{e^{2x}}} \right|_0^1 = \dfrac{1}{2}.2.{e^2} - \dfrac{1}{2}.1.{e^0} - \dfrac{1}{4}{e^2} + \dfrac{1}{4}{e^0} = \dfrac{7}{4}{e^2} - \dfrac{1}{4}\\ \Rightarrow a = \dfrac{7}{4};\,\,b =  - \dfrac{1}{4}\,\,\, \Rightarrow a - b = 2\end{array}\)

Chọn: B

Câu 40: Trắc nghiệm ID: 150117

Hàm số \(y =  - {x^3} + 3{x^2} - 2\) đồng biến trên khoảng: 

Xem đáp án

\(TXD:\,\,D = \mathbb{R}\).

\(y =  - {x^3} + 3{x^2} - 2 \Rightarrow y' =  - 3{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\) 

 \(y' \ge 0 \Leftrightarrow x \in \left[ {0;2} \right]\)\( \Rightarrow \) Hàm số \(y =  - {x^3} + 3{x^2} - 2\)  đồng biến trên khoảng \(\left( {0;2} \right)\).

Chọn: A

Câu 41: Trắc nghiệm ID: 150118

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^4 {f\left( x \right)dx}  = 10,\,\,\int\limits_3^4 {f\left( x \right)dx}  = 4\). Tích phân \(\int\limits_0^3 {f\left( x \right)dx} \) bằng:  

Xem đáp án

\(\int\limits_0^3 {f(x)dx} \)\( = \int\limits_0^4 {f\left( x \right)} dx + \int\limits_4^3 {f\left( x \right)} dx = \int\limits_0^4 {f\left( x \right)} dx - \int\limits_3^4 {f\left( x \right)} dx\)\( = 10 - 4 = 6\).

Chọn: D

Câu 42: Trắc nghiệm ID: 150119

Một hộp có 10 quả cầu xanh, 5 quả cầu đỏ. Lấy ngẫu nhiên 5 quả từ hộp đó. Xác suất để được 5 quả có đủ hai màu là: 

Xem đáp án

Số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = C_{15}^5\)

Gọi A:  “5 quả có đủ hai màu” \( \Rightarrow \overline A \) : "Lấy cả 5 quả cầu một màu"\( \Rightarrow n\left( {\overline A } \right) = C_5^5 + C_{10}^5\)

\( \Rightarrow P\left( {\overline A } \right) = \dfrac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \dfrac{{C_5^5 + C_{10}^5}}{{C_{15}^5}} = \dfrac{{1 + 252}}{{3303}} = \dfrac{{253}}{{3303}} = \dfrac{{23}}{{273}} \Rightarrow P\left( A \right) = 1 - \dfrac{{23}}{{273}} = \dfrac{{250}}{{273}}\).

Chọn: D

Câu 43: Trắc nghiệm ID: 150120

Tập xác định của hàm số \(y = {\left[ {\ln \left( {x - 2} \right)} \right]^\pi }\) là: 

Xem đáp án

ĐKXĐ: \(\left\{ \begin{array}{l}x - 2 > 0\\\ln \left( {x - 2} \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 2\\x - 2 > {e^0} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 2\\x > 3\end{array} \right. \Leftrightarrow x > 3\)

Vậy TXĐ của hàm số là: \(\left( {3; + \infty } \right)\).

Chọn: B

Câu 44: Trắc nghiệm ID: 150121

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\,\,AD = AA' = 2a\). Khoảng cách giữa hai đường thẳng \(AC\) và \(DC'\) bằng: 

Xem đáp án

Ta có: \(C'D//AB' \Rightarrow C'D//\left( {ACB'} \right)\)

\( \Rightarrow d\left( {C'D;AC} \right) = d\left( {C'D;\left( {AB'C} \right)} \right) = d\left( {C';\left( {AB'C} \right)} \right)\)

Mà \(d\left( {C';\left( {AB'C} \right)} \right) = d\left( {B;\left( {AB'C} \right)} \right)\) (do BC’ cắt (AB’C) (cắt cạnh B’C) tại trung điểm của BC’)

\( \Rightarrow d\left( {C'D;AC} \right) = d\left( {B;\left( {AB'C} \right)} \right)\)

Xét tứ diện vuông BAB’C có:

\(\dfrac{1}{{{h^2}}} = \dfrac{1}{{B{A^2}}} + \dfrac{1}{{BB{'^2}}} + \dfrac{1}{{B{C^2}}},\,\,\left( {h = d\left( {B;\left( {AB'C} \right)} \right)} \right)\)

\(\dfrac{1}{{{h^2}}} = \dfrac{1}{{{a^2}}} + \dfrac{1}{{4{a^2}}} + \dfrac{1}{{4{a^2}}} = \dfrac{3}{{2{a^2}}} \Rightarrow h = \dfrac{{\sqrt 6 }}{3}a\)\( \Rightarrow d\left( {C'D;AC} \right) = \dfrac{{\sqrt 6 a}}{3}\).

Chọn: A

Câu 45: Trắc nghiệm ID: 150122

Hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và dấu của đạo hàm được cho bởi bảng dưới đây:

Hàm số \(y = f\left( {2x - 2} \right)\) nghịch biến trên khoảng: 

Xem đáp án

Ta có:

\(y = f\left( {2x - 2} \right) \Rightarrow y' = f'\left( {2x - 2} \right).\left( {2x - 2} \right)' = 2f'\left( {2x - 2} \right)\)

 \(y' \le 0 \Leftrightarrow f'\left( {2x - 2} \right) \le 0 \Leftrightarrow 0 \le 2x - 2 \le 2 \Leftrightarrow 1 \le x \le 2\)

\( \Rightarrow \) Hàm số  \(y = f\left( {2x - 2} \right)\) nghịch biến trên khoảng \(\left( {1;2} \right)\).

Chọn: C

Câu 46: Trắc nghiệm ID: 150123

Cho \(n \in {\mathbb{N}^*}\) và \(C_n^2.C_n^{n - 2} + C_n^8.C_n^{n - 8} = 2C_n^2.C_n^{n - 8}\) . Tổng \(T = {1^2}C_n^1 + {2^2}C_n^2 + ... + {n^2}C_n^n\) bằng: 

Xem đáp án

Ta có:

\(\begin{array}{l}C_n^2C_n^{n - 2} + C_n^8C_n^{n - 8} = 2C_n^2C_n^{n - 8} \Leftrightarrow {\left( {C_n^2} \right)^2} - 2C_n^2C_n^8 + {\left( {C_n^8} \right)^2} = 0\\ \Leftrightarrow {\left( {C_n^2 - C_n^8} \right)^2} = 0 \Leftrightarrow C_n^2 - C_n^8 = 0 \Leftrightarrow \dfrac{{n!}}{{2!.\left( {n - 2} \right)!}} - \dfrac{{n!}}{{8!.\left( {n - 8} \right)!}} = 0\\ \Leftrightarrow \dfrac{1}{{\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right)\left( {n - 7} \right)}} - \dfrac{1}{{8.7.6.5.4.3}} = 0\\ \Leftrightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right)\left( {n - 7} \right) = 8.7.6.5.4.3 \Leftrightarrow n = 10\end{array}\)

Xét hàm số: \(f\left( x \right) = {(x + 1)^{10}} = \sum\limits_{i = 0}^{10} {C_{10}^i{x^i}} \) có:

\(\begin{array}{l}f'\left( x \right) = 10{(x + 1)^9} = \sum\limits_{i = 0}^{10} {C_{10}^ii{x^{i - 1}}} \\ \Rightarrow x.f'\left( x \right) = 10x{(x + 1)^9} = \sum\limits_{i = 0}^{10} {C_{10}^ii{x^i}} \\ \Rightarrow {\left( {x.f'\left( x \right)} \right)^\prime } = {\left( {10x{{(x + 1)}^9}} \right)^\prime } = \sum\limits_{i = 0}^{10} {C_{10}^i{i^2}{x^{i - 1}}} \\ \Rightarrow 10x.9{(x + 1)^8} + 10{(x + 1)^9} = \sum\limits_{i = 0}^{10} {C_{10}^i{i^2}{x^{i - 1}}} \\ \Rightarrow 90{x^2}{(x + 1)^8} + 10x{(x + 1)^9} = \sum\limits_{i = 0}^{10} {C_{10}^i{i^2}{x^i}} \\ \Rightarrow \sum\limits_{i = 0}^{10} {C_{10}^i{i^2}{x^i}}  = 90{x^2}{(x + 1)^8} + 10x{(x + 1)^9}\end{array}\)

\(\begin{array}{l} \Rightarrow T = {1^2}C_n^1 + {2^2}C_n^2 + ... + {n^2}C_n^2\\\,\,\,\,\,\,\,\,\,\,\, = {1^2}C_{10}^1 + {2^2}C_{10}^2 + ... + {10^2}C_{10}^{10}\\\,\,\,\,\,\,\,\,\,\,\, = {90.1.2^8} + {10.1.2^9} = {55.2^9}\end{array}\) (ứng với \(x = 1\)).

Chọn: A

Câu 47: Trắc nghiệm ID: 150124

Cho  \(n \in \mathbb{N}\) và \(n! = 1\). Số giá trị của \(n\)  thỏa mãn giả thiết đã cho là: 

Xem đáp án

\(n \in \mathbb{N},\,\,n! = 1 \Leftrightarrow \left[ \begin{array}{l}n = 0\\n = 1\end{array} \right.\)

Chọn: B

Câu 48: Trắc nghiệm ID: 150125

Cho hàm số  có đồ thị như hình dưới đây. Hàm số \(g\left( x \right) = \ln \left( {f\left( x \right)} \right)\) đồng biến trên khoảng nào dưới đây? 

Xem đáp án

Ta có: \(g\left( x \right) = \ln \left( {f\left( x \right)} \right) \Rightarrow g'\left( x \right) = \dfrac{{f'\left( x \right)}}{{f\left( x \right)}}\)

Quan sát đồ thị hàm số, ta thấy:

+) \(f\left( x \right) > 0,\,\,\forall x\)

+) \(f'\left( x \right) > 0\) trên các khoảng \(\left( { - 1;0} \right),\,\,\left( {1; + \infty } \right)\)

\( \Rightarrow g\left( x \right)\) đồng biến trên các khoảng \(\left( { - 1;0} \right),\,\,\left( {1; + \infty } \right)\) .

Chọn: B

Câu 49: Trắc nghiệm ID: 150126

Cần sản xuất một vỏ hộp sữa hình trụ có thể tích  \(V\) cho trước. Để tiết kiệm vật liệu nhất thì bán kính đáy phải bằng 

Xem đáp án

Ta có: \(V = \pi {r^2}h \Leftrightarrow h = \dfrac{V}{{\pi {r^2}}}\)

Diện tích vật liệu để làm vỏ hộp là: \({S_{tp}} = 2\pi {r^2} + 2\pi rh = 2\pi {r^2} + 2\pi r.\dfrac{V}{{\pi {r^2}}} = 2\pi {r^2} + \dfrac{{2V}}{r} = f\left( r \right)\), \(r > 0\)

Ta có :  \(f'\left( r \right) = 4\pi r - \dfrac{{2V}}{{{r^2}}},\,\,f'\left( r \right) = 0 \Leftrightarrow {r^3} = \dfrac{V}{{2\pi }} \Leftrightarrow r = \sqrt[3]{{\dfrac{V}{{2\pi }}}}\)

Bảng biến thiên:

Vậy, để tiết kiệm vật liệu nhất thì bán kính đáy phải bằng \(\sqrt[3]{{\dfrac{V}{{2\pi }}}}\).

Chọn A

Câu 50: Trắc nghiệm ID: 150127

Bất phương trình \({4^x} - \left( {m + 1} \right){2^{x + 1}} + m \ge 0\) nghiệm đúng với mọi \(x \ge 0\). Tập tất cả các giá trị của \(m\) là: 

Xem đáp án

Đặt \({2^x} = t,\,\,t \ge 1\) (do\(x \ge 0\)). 

Bất phương trình  trở thành:  \({t^2} - 2\left( {m + 1} \right)t + m \ge 0 \Leftrightarrow m\left( {1 - 2t} \right) \ge 2t - {t^2}\,\,\left( * \right)\)

Để bất phương trình ban đầu nghiệm đúng với mọi \(x \ge 0\) thì (*) nghiệm đúng với mọi\(\,t \ge 1\)

Do \(t \ge 1 \Rightarrow  - 2t \le  - 2 \Leftrightarrow 1 - 2t \le  - 1 < 0\).

Khi đó \(\left( * \right) \Leftrightarrow m \le \dfrac{{2t - {t^2}}}{{1 - 2t}}\) nghiệm đúng với mọi \(\,t \ge 1 \Rightarrow m \le \mathop {\min }\limits_{t \ge 1} \left( {\dfrac{{2t - {t^2}}}{{1 - 2t}}} \right)\)

Xét hàm số \(f\left( t \right) = \dfrac{{2t - {t^2}}}{{1 - 2t}},\,\,t \ge 1\) có:

\(f'\left( t \right) = \dfrac{{\left( {2 - 2t} \right)\left( {1 - 2t} \right) - \left( {2t - {t^2}} \right).\left( { - 2} \right)}}{{{{\left( {1 - 2t} \right)}^2}}} = \dfrac{{2{t^2} - 2t + 2}}{{{{\left( {1 - 2t} \right)}^2}}} > 0,\,\,\forall t \ge 1\)

\( \Rightarrow \mathop {\min }\limits_{t \ge 1} f\left( t \right) = f\left( 1 \right) =  - 1 \Rightarrow m \le  - 1\)

Vậy, tập tất cả các giá trị của  m là  \(\left( { - \infty ; - 1} \right]\).

Chọn: B

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »