Cho hình trụ có hai đáy là hai hình tròn \(\left( {O;R} \right)\) và \(\left( {O';R} \right)\). \(AB\) là một dây cung của đường tròn \(\left( {O;R} \right)\) sao cho tam giác \(O'AB\) là tam giác đều và mặt phẳng \(\left( {O'AB} \right)\) tạo với mặt phẳng chứa đường tròn \(\left( {O;R} \right)\) một góc \(60^\circ \). Tính theo \(R\) thể tích \(V\) của khối trụ đã cho.
A. \(V = \dfrac{{\pi \sqrt 7 {R^3}}}{7}\).
B. \(V = \dfrac{{3\pi \sqrt 5 {R^3}}}{5}\).
C. \(V = \dfrac{{\pi \sqrt 5 {R^3}}}{5}\).
D. \(V = \dfrac{{3\pi \sqrt 7 {R^3}}}{7}\).
Lời giải của giáo viên
Gọi \(I\) là trung điểm của \(AB\) thì \(O'I \bot AB,OI \bot AB\).
Suy ra góc giữa \(\left( {O'AB} \right)\) và \(\left( {O;R} \right)\) là góc giữa \(O'I\) và \(OI\) hay \(\widehat {O'IO} = {60^0}\).
Đặt \(AI = x \Rightarrow AB = 2x\).
Tam giác vuông \(OIA\) có \(OA = R,AI = x\) \( \Rightarrow OI = \sqrt {O{A^2} - A{I^2}} = \sqrt {{R^2} - {x^2}} \).
Tam giác \(O'AB\) đều cạnh \(AB = 2x \Rightarrow O'I = \dfrac{{2x\sqrt 3 }}{2} = x\sqrt 3 \).
Tam giác \(O'OI\) vuông tại \(O\) nên \(\cos {60^0} = \dfrac{{OI}}{{O'I}} \Leftrightarrow \dfrac{1}{2} = \dfrac{{\sqrt {{R^2} - {x^2}} }}{{x\sqrt 3 }} \Leftrightarrow x = \dfrac{{2R}}{{\sqrt 7 }}\).
Suy ra \(OO' = O'I.\sin {60^0} = \dfrac{{2R}}{{\sqrt 7 }}.\sqrt 3 .\dfrac{{\sqrt 3 }}{2} = \dfrac{{3R}}{{\sqrt 7 }}\).
Thể tích khối trụ \(V = \pi {R^2}h = \pi {R^2}.\dfrac{{3R}}{{\sqrt 7 }} = \dfrac{{3\pi \sqrt 7 {R^3}}}{7}\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Tập xác định của hàm số \(y = {\left[ {\ln \left( {x - 2} \right)} \right]^\pi }\) là:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^4 {f\left( x \right)dx} = 10,\,\,\int\limits_3^4 {f\left( x \right)dx} = 4\). Tích phân \(\int\limits_0^3 {f\left( x \right)dx} \) bằng:
Cho khối chóp tam giác \(S.ABC\) có đỉnh \(S\) và đáy là tam giác \(ABC\). Gọi \(V\) là thể tích của khối chóp. Mặt phẳng đi qua trọng tâm của ba mặt bên của khối chóp chia khối chóp thành hai phần. Tính theo \(V\) thể tích của phần chứa đáy của khối chóp.
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.
Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \(2f\left( x \right) + {x^2} > 4x + m\) nghiệm đúng với mọi \(x \in \left( { - 1;3} \right)\).
Hàm số \(y = - {x^3} + 3{x^2} - 2\) đồng biến trên khoảng:
Lăng trụ có chiều cao bằng \(a\), đáy là tam giác vuông cân và có thể tích bằng \(2{a^3}\). Cạnh góc vuông của đáy lăng trụ bằng
Cho tứ diện \(ABCD\). Trên các cạnh \(AB\),\(BC\), \(CA\), \(AD\) lần lượt lấy 3; 4; 5; 6 điểm phân biệt khác các điểm \(A\), \(B\), \(C\), \(D\). Số tam giác phân biệt có các đỉnh là các điểm vừa lấy là
Cho \(n \in \mathbb{N}\) và \(n! = 1\). Số giá trị của \(n\) thỏa mãn giả thiết đã cho là:
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hai đường tròn \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) lần lượt có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 1\) và \({\left( {x + 1} \right)^2} + {y^2} = 1\). Biết đồ thị hàm số \(y = \dfrac{{ax + b}}{{x + c}}\) đi qua tâm của \(\left( {{C_1}} \right)\), đi qua tâm của \(\left( {{C_2}} \right)\) và có các đường tiệm cận tiếp xúc với cả \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\). Tổng \(a + b + c\) là
Hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và dấu của đạo hàm được cho bởi bảng dưới đây:
Hàm số \(y = f\left( {2x - 2} \right)\) nghịch biến trên khoảng:
Cho hàm số \(y = a{x^4} + b{x^2} + c\) (\(a \ne 0\)) có đồ thị như hình vẽ dưới đây.
Mệnh đề nào dưới đây đúng?
Cho hình chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B\), \(\widehat C = 60^\circ \), \(AC = 2\), \(SA \bot \left( {ABC} \right)\), \(SA = 1\). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách \(d\) giữa \(SM\) và \(BC\) là
Cho hàm số \(y = \dfrac{{2x + 1}}{{x + 2}}\). Khẳng định nào dưới đây đúng?
Số nào sau đây là điểm cực đại của hàm số \(y = {x^4} - 2{x^3} + {x^2} + 2\)?
Với \(a\) là số thực dương khác \(1\) tùy ý, \({\log _{{a^2}}}{a^3}\) bằng