Lời giải của giáo viên
Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).
Tam giác SAC đều cạnh \(a \Rightarrow SO = \frac{{a\sqrt 3 }}{2}\) và AC = a.
\( \Rightarrow AB = \frac{a}{{\sqrt 2 }}\)
Vậy \({V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}{\left( {\frac{a}{{\sqrt 2 }}} \right)^2} = \frac{{{a^3}\sqrt 3 }}{{12}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=a^x\) có đồ thị như hình bên. Giá trị của a là:
Giá trị của biểu thức \(A = \sum\limits_{k = 1}^{2019} {C_{2019}^k{{.9}^k}} \) bằng
Trong không gian tọa độ Oxyz, cho hình bình hành ABCD có \(A\left( {1;0;1} \right),B\left( { - 1;2;1} \right),C\left( {0; - 1;2} \right)\). Tọa độ của điểm D là
Cho tứ diện ABCD có \(AB = AC = AD = a,BAC = {60^0},CAD = {60^0},\) \(DAB = {90^0}\). Khoảng cách giữa hai đường thẳng AC và BD là
Cho hình nón có góc ở đỉnh bằng \(80^0\). Góc giữa đường thẳng chứa một đường sinh và mặt phẳng chứa đường tròn đáy bằng
Trong không gian tọa độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 9\) và điểm M thay đổi trên mặt cầu. Giá trị lớn nhất của độ dài đoạn thẳng OM là
Trong không gian tọa độ Oxyz, phương trình mặt cầu tâm I(2;- 3; - 4) bán kính 4 là
Cho \(a,b \in R,a < b\) và hàm số \(y=F(x)\) là một nguyên hàm của hàm số \(y=\sin x\). Khẳng định nào sau đây là đúng?
Giới hạn \(\mathop {\lim }\limits_{x \to - 1} \frac{{4x + 5}}{{7x + 8}}\) bằng
Cho lăng trụ đứng ABC.A’B’C’ có AA’ = 3, tam giác A’BC có diện tích bằng 6 và mặt phẳng (A’BC) tạo với mặt đáy góc \(60^0\). Thể tích của khối lăng trụ đã cho là
Trong không gian tọa độ Oxyz, cho các điểm \(A\left( {3;4;0} \right),B\left( {3;0; - 4} \right),C\left( {0; - 3; - 4} \right)\). Trục của đường tròn ngoại tiếp tam giác ABC đi qua điểm nào trong các điểm sau đây?
Cho hàm số \(y=f(x)\) có đạo hàm là hàm liên tục trên R thỏa mãn \(\int\limits_0^2 {f'\left( x \right)dx = 45,f\left( 0 \right) = 3} \). Giá trị của biểu thức \(f(2)\) bằng
Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^{ - {x^2}}} > \frac{{81}}{{16}}\) là
Khẳng định nào trong các khẳng định sau là khẳng định đúng?
Một người gửi tiết kiệm 300 triệu với lãi suất 5% một năm và lãi hàng năm được nhập vào vốn. Sau ít nhất bao nhiêu năm người đó nhận được số tiền lớn hơn 450 triệu?