Câu hỏi Đáp án 2 năm trước 43

Cho tứ diện ABCD có \(AB = AC = AD = a,BAC = {60^0},CAD = {60^0},\) \(DAB = {90^0}\). Khoảng cách giữa hai đường thẳng ACBD

A. \(\frac{{a\sqrt {30} }}{{10}}\)

B. \(\frac{a}{2}\)

Đáp án chính xác ✅

C. \(\frac{{a\sqrt 3 }}{2}\)

D. \(\frac{{a\sqrt 2 }}{2}\)

Lời giải của giáo viên

verified HocOn247.com

Ta có: \(\angle BAC = \angle CAD = {60^0},AB = AC = AD = A\)

\( \Rightarrow \Delta ABC,\Delta ACD\) đều \( \Rightarrow BC = CD = a\).

Có \(\angle BAD = {90^0} \Rightarrow BD = \sqrt {A{B^2} + A{D^2}}  = a\sqrt 2 \).

\( \Rightarrow \Delta BCD\) vuông cân tại C.

Gọi H là trung điểm của BD. Kẻ \(BD\bot KH\).

\(\begin{array}{l}
 \Rightarrow \left\{ \begin{array}{l}
CH \bot BD\\
AH \bot BD
\end{array} \right. \Rightarrow BD \bot \left( {CAH} \right) \Rightarrow BD \bot KH\\
 \Rightarrow d\left( {AC,BD} \right) = KH
\end{array}\)    

Xét \(\Delta AHC\) vuông tại H có đường cao KH ta có:

\(KH = \frac{{HC.AH}}{{\sqrt {H{C^2} + H{A^2}} }} = \frac{{\frac{1}{4}B{D^2}}}{{\sqrt {\frac{1}{4}B{D^2} + \frac{1}{4}B{D^2}} }} = \frac{{\sqrt 2 }}{4}BD = \frac{{\sqrt 2 }}{4}.a\sqrt 2  = \frac{a}{2}\) 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y=a^x\) có đồ thị như hình bên. Giá trị của a là:

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Trong không gian tọa độ Oxyz, cho hình bình hành ABCD có \(A\left( {1;0;1} \right),B\left( { - 1;2;1} \right),C\left( {0; - 1;2} \right)\). Tọa độ của điểm D là

Xem lời giải » 2 năm trước 43
Câu 3: Trắc nghiệm

Cho hình nón có góc ở đỉnh bằng \(80^0\). Góc giữa đường thẳng chứa một đường sinh và mặt phẳng chứa đường tròn đáy bằng

Xem lời giải » 2 năm trước 41
Câu 4: Trắc nghiệm

Trong không gian tọa độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 9\) và điểm M thay đổi trên mặt cầu. Giá trị lớn nhất của độ dài đoạn thẳng OM là

Xem lời giải » 2 năm trước 40
Câu 5: Trắc nghiệm

Cho \(a,b \in R,a < b\) và hàm số \(y=F(x)\) là một nguyên hàm của hàm số \(y=\sin x\). Khẳng định nào sau đây là đúng?

Xem lời giải » 2 năm trước 40
Câu 6: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm là hàm liên tục trên R thỏa mãn \(\int\limits_0^2 {f'\left( x \right)dx = 45,f\left( 0 \right) = 3} \). Giá trị của biểu thức \(f(2)\) bằng

Xem lời giải » 2 năm trước 39
Câu 7: Trắc nghiệm

Cho lăng trụ đứng ABC.A’B’C’ có AA’ = 3, tam giác A’BC có diện tích bằng 6 và mặt phẳng (A’BC) tạo với mặt đáy góc \(60^0\). Thể tích của khối lăng trụ đã cho là      

Xem lời giải » 2 năm trước 38
Câu 8: Trắc nghiệm

Trong không gian tọa độ Oxyz, phương trình mặt cầu tâm I(2;- 3; - 4) bán kính 4 là

Xem lời giải » 2 năm trước 38
Câu 9: Trắc nghiệm

Trong không gian tọa độ Oxyz, cho các điểm \(A\left( {3;4;0} \right),B\left( {3;0; - 4} \right),C\left( {0; - 3; - 4} \right)\). Trục của đường tròn ngoại tiếp tam giác ABC đi qua điểm nào trong các điểm sau đây?

Xem lời giải » 2 năm trước 38
Câu 10: Trắc nghiệm

Giá trị của biểu thức \(A = \sum\limits_{k = 1}^{2019} {C_{2019}^k{{.9}^k}} \) bằng

Xem lời giải » 2 năm trước 38
Câu 11: Trắc nghiệm

Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^{ - {x^2}}} > \frac{{81}}{{16}}\) là

Xem lời giải » 2 năm trước 38
Câu 12: Trắc nghiệm

Cho hình chóp đều S.ABCD có tam giác SAC đều cạnh a. Thể tích của khối chóp S.ABCD là

Xem lời giải » 2 năm trước 38
Câu 13: Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{x \to  - 1} \frac{{4x + 5}}{{7x + 8}}\) bằng

Xem lời giải » 2 năm trước 37
Câu 14: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đồ thị như hình bên. Hàm số đã cho đồng biến trên khoảng 

Xem lời giải » 2 năm trước 36
Câu 15: Trắc nghiệm

Khẳng định nào trong các khẳng định sau là khẳng định đúng?

Xem lời giải » 2 năm trước 36

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »