Lời giải của giáo viên
+ Dựng hình chóp S.A'B'C' sao cho A là trung điểm B'C', B là trung điểm A'C', C là trung điểm A'B'.
+ Khi đó SB = AC = BA' = BC' = 4 nên \(\Delta SA'C'\) vuông tại S và \(SA{'^2} + SC{'^2} = {\left( {2.SB} \right)^2} = 64{\rm{ }}(1)\).
+ Tương tự \(\Delta SB'C',\Delta SA'B'\) vuông tại S và \(\left\{ \begin{array}{l} SA{'^2} + SB{'^2} = 80{\rm{ (2)}}\\ SB{'^2} + SC{'^2} = 36{\rm{ (3)}} \end{array} \right.\).
+ Từ (1), (2), (3) ta suy ra \(SC' = \sqrt {10} ;SB' = \sqrt {26} ;SA' = \sqrt {54} \)
+ Ta tính được \({V_{S.A'B'C'}} = \frac{1}{3}SC'.\frac{1}{2}.SA'.SB' = \sqrt {390} \) và \({V_{S.ABC}} = \frac{1}{4}{V_{S.A'B'C'}} = \frac{{\sqrt {390} }}{4}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Bất phương trình \({3^{2x + 1}} - {7.3^x} + 2 > 0\) có nghiệm là
Khối chóp S.ABCD có đáy là hình thoi và \(SA \bot (ABCD)\) có thể tích bằng
Hàm số \(y = {\log _2}\left( {2x - 3} \right)\) có tập xác định là
Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(-3;1;2), B(1;-1;0) là
Có 8 học sinh nam, 5 học sinh nữ và 1 thầy giáo được sắp xếp ngẫu nhiên đứng thành một vòng tròn. Tính xác suất để thầy giáo đứng giữa 2 học sinh nam.
Tìm tập nghiệm S của bất phương trình \({\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 1} \right)\).
Số giao điểm của đồ thị hàm số \(y = {x^4} - 5{x^2} + 4\) với trục hoành là:
Cho trước 5 chiếc ghế xếp thành một hàng ngang. Số cách xếp ba bạn A, B, C vào 5 chiếc ghế đó sao cho mỗi bạn ngồi một ghế là
Cho \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} } {\rm{d}}x\) và \(u = {x^2} - 1\). Mệnh đề nào dưới đây sai ?
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3, trục hoành và hai đường thẳng x = -1; x = 2 là
Cho hàm số f(x) liên tục trên [-1;3] và có đồ thị như hình vẽ bên. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [-1;3]. Tính M - m.
Với a, b, c là các số thực dương tùy ý khác 1 và \({\log _a}c = x,{\log _b}c = y\). Khi đó giá trị của \({\log _c}\left( {ab} \right)\) là
Trong không gian Oxyz cho điểm A(-2;1;3). Hình chiếu vuông góc của A lên trục Ox có tọa độ là:
Trong không gian Oxyz, mặt cầu \(\left( S \right):{\left( {x - 5} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 3\) có bán kính bằng