Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,\) khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\) là \(\dfrac{{a\sqrt {15} }}{5}\) , khoảng cách giữa \(SA,BC\) là \(\dfrac{{a\sqrt {15} }}{5}\) . Biết hình chiếu của \(S\) lên mặt phẳng \(\left( {ABC} \right)\) nằm trong tam giác \(ABC,\) tính thể tích khối chóp \(S.ABC\).
A. \(\dfrac{{{a^3}}}{4}\)
B. \(\dfrac{{{a^3}}}{8}\)
C. \(\dfrac{{{a^3}\sqrt 3 }}{4}\)
D. \(\dfrac{{{a^3}\sqrt 3 }}{8}\)
Lời giải của giáo viên
Dựng hình bình hành \(ABCD\).
Gọi O là chân đường vuông góc kẻ từ S đến mặt phẳng \(\left( {ABCD} \right)\) \(\left( {O \in \left( {ABCD} \right)} \right)\)
Qua điểm O kẻ đường thẳng vuông góc với BC cắt BC và AD lần lượt tại H và K.
Khi đó ta có \(HM \bot BC;\,HM \bot AD;\,SO \bot BC;SO \bot AD\) (do \(SO \bot \left( {ABCD} \right)\))
suy ra \(BC \bot \left( {SHM} \right);AD \bot \left( {SHM} \right)\)
Trong \(\left( {SHM} \right)\) kẻ \(MN \bot SH\) tại \(N\) và \(HK \bot SM\) tại \(K.\)
Ta có \(MN \bot SH\) và \(MN \bot BC\) (do \(BC \bot \left( {SHM} \right)\)) nên \(MN \bot \left( {SBC} \right)\) tại \(N \Rightarrow d\left( {M;\left( {SBC} \right)} \right) = MN\)
Vì \(AD//BC \Rightarrow AD//\left( {SBC} \right);\,M \in AD \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = d\left( {M;\left( {SBC} \right)} \right) = MN = \dfrac{{a\sqrt {15} }}{5}\)
Tương tự ta có \(HK \bot \left( {SAD} \right)\) tại \(K \Rightarrow d\left( {H;\left( {SAD} \right)} \right) = HK\)
Vì \(BC//AD \Rightarrow BC//\left( {SAD} \right);H \in BC \Rightarrow d\left( {BC;SA} \right) = d\left( {BC;\left( {SAD} \right)} \right) = d\left( {H;\left( {SAD} \right)} \right) = HK = \dfrac{{a\sqrt {15} }}{5}\)
Xét tam giác \(SHM\) có hai đường cao bằng nhau \(MN = HK\) nên tam giác \(SHM\) cân tại S. Lại có \(SO \bot MN \Rightarrow O\) là trung điểm của \(MN.\)
Ta có \({S_{ABCD}} = MH.BC = 2{S_{ABC}} \Leftrightarrow MH.a = 2.\dfrac{{{a^2}\sqrt 3 }}{4} \Rightarrow MH = \dfrac{{a\sqrt 3 }}{2} \Rightarrow OM = \dfrac{{MH}}{2} = \dfrac{{a\sqrt 3 }}{4}\)
Xét tam giác \(MKH\) vuông tại \(K \Rightarrow MK = \sqrt {M{H^2} - H{K^2}} = \sqrt {\dfrac{{3{a^2}}}{4} - \dfrac{{15{a^2}}}{{25}}} = \dfrac{{a\sqrt 3 }}{{2\sqrt 5 }}\)
Ta có \(\Delta MKH\) dồng dạng với \(\Delta MOS\)(g-g) nên \(\dfrac{{KH}}{{SO}} = \dfrac{{MK}}{{MO}} \Rightarrow SO = \dfrac{{MO.HK}}{{MK}} = \dfrac{{\dfrac{{a\sqrt 3 }}{4}.\dfrac{{a\sqrt {15} }}{5}}}{{\dfrac{{a\sqrt 3 }}{{2\sqrt 5 }}}} = \dfrac{{a\sqrt 3 }}{2}\)
Khi đó thể tích \({V_{S.ABC}} = \dfrac{1}{3}.SO.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}}}{8}\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Tập xác định của hàm số \(y = {x^4} - 2018{x^2} - 2019\) là
Cho hàm số \(y = f\left( x \right) = \,a\,{x^3} + b{x^2} + cx + d\) có đồ thị hàm số như hình bên dưới đây:
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( x \right) - \left( {m + 5} \right)\left| {f\left( x \right)} \right| + 4m + 4 = 0\) có 7 nghiệm phân biệt?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,BC = a\sqrt 3 ,SA = a\) và \(SA\) vuông góc với đáy \(ABCD\). Tính \(\sin \alpha \) với \(\alpha \) là góc tạo bởi đường thẳng \(BD\) và mặt phẳng \(\left( {SBC} \right)\).
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\), góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Tính thể tích của khối chóp \(S.ABCD\) theo \(a\).
Cho hàm số \(y = {x^3} - 3{x^2} + 4\) có đồ thị \(\left( C \right)\) , đường thẳng \((d):y = m(x + {\rm{ }}1)\) với \(m\) là tham số, đường thẳng \(\left( \Delta \right):y = 2x - 7.\) Tìm tổng tất cả các giá trị của tham số \(m\) để đường thẳng \(\left( d \right)\) cắt đồ thị \(\left( C \right)\) tại 3 điểm phân biệt \(A( - 1;0);{\rm{ }}B;{\rm{ }}C\) sao cho \(B,C\) cùng phía với \(\Delta \) và \(d(B;\Delta ){\rm{ }} + d(C;\Delta ){\rm{ }} = {\rm{ }}6\sqrt 5 .\)
Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \dfrac{1}{4}{x^4} + mx - \dfrac{3}{{2x}}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\)?
Giá trị lớn nhất của hàm số \(y = f\left( x \right) = {x^4} - 4{x^2} + 5\) trên đoạn \(\left[ { - 2;3} \right]\) bằng
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SAB\) là tam giác đều và \(\left( {SAB} \right)\) vuông góc với \(\left( {ABCD} \right).\) Tính \(\cos \varphi \) với \(\varphi \) là góc tạo bởi \((SAC)\) và \((SCD).\)
Cho tam giác \(ABC\) có \(A\left( {1; - 2;0} \right);B\left( {2;1; - 2} \right);C\left( {0;3;4} \right)\). Tìm tọa độ điểm D để tứ giác \(ABCD\) là hình bình hành.
Cho tam giác \(ABC\) cân tại \(A,\) góc \(\angle BAC = {120^0}\) và \(AB = 4cm.\) Tính thể tích khối tròn xoay lớn nhất có thể khi ta quay tam giác \(ABC\) xung quanh đường thẳng chứa một cạnh của tam giác \(ABC\)
Một hình trụ có bán kính đáy bằng chiều cao và bằng \(a.\) Một hình vuông \(ABCD\) có \(AB;{\rm{ }}CD\) là 2 dây cung của 2 đường tròn đáy và mặt phẳng \((ABCD)\) không vuông góc với đáy. Diện tích hình vuông đó bằng
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\), biết \(AB = a,AC = 2a\) và \(A'B = 3a\). Tính thể tích của khối lăng trụ \(ABC.A'B'C'\).
Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông cân ở \(B\) , \(AC = a\sqrt {2.} \) \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) và \(SA = a.\) Gọi \(G\) là trọng tâm của tam giác \(SBC\) Một mặt phẳng đi qua hai điểm \(A,G\) và song song với \(BC\) cắt \(SB,\,SC\) lần lượt tại \(B'\) và \(C'\) . Thể tích khối chóp \(S.AB'C'\)bằng:
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\) như hình vẽ, đường thẳng \(d\) có phương trình \(y = x - 1.\) Biết phương trình \(f(x) = 0\) có ba nghiệm \({x_1} < {x_2} < {x_3}\). Giá trị của \({x_1}{x_3}\) bằng