Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân,\(BA{\rm{ }} = {\rm{ }}BC{\rm{ }} = a,\widehat {SAB} = \widehat {SCB} = 90^\circ ,\) biết khoảng cách từ A đến mặt phẳng (SBC) bằng \(\frac{{a\sqrt 3 }}{2}\) . Góc giữa SC và mặt phẳng (ABC) là:
A. \(\frac{\pi }{6}.\)
B. \(\arccos \frac{{\sqrt 3 }}{4}.\)
C. \(\frac{\pi }{3}.\)
D. \(\frac{\pi }{4}.\)
Lời giải của giáo viên
Gọi D là hình chiếu vuông góc của S lên (ABC), H là hình chiếu vuông góc của D lên SC
Khi đó:
\(\begin{array}{l}
\left\{ \begin{array}{l}
AB \bot SA\\
AB \bot SD
\end{array} \right.A \Rightarrow B \bot \left( {SAD} \right) \Rightarrow AB \bot AD\\
\left\{ \begin{array}{l}
BC \bot SC\\
BC \bot SD
\end{array} \right. \Rightarrow BC \bot \left( {SDC} \right) \Rightarrow BC \bot DC
\end{array}\)
Suy ra ABCD là hình vuông và cạnh CD = a
Ta có: AD//BC suy ra AD//(SBC) \( \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = d\left( {D,\left( {SBC} \right)} \right) = DH \Rightarrow DH = \frac{{a\sqrt 3 }}{2}\)
Vì DC là hình chiếu vuông góc của SC lên (ABCD) nên góc SCD là góc giữa đường thẳng SC và (ABC)
\(\sin \widehat {SCD} = \frac{{DH}}{{DC}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {SCD} = \frac{\pi }{3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho dãy số \(({u_n}):\left\{ \begin{array}{l}
{u_1} = 5\\
{u_{n + 1}} = {u_n} + n
\end{array} \right.\) . Số 20 là số hạng thứ mấy trong dãy?
Trong mặt phẳng tọa độ Oxy cho bốn điểm \(A\left( {3; - 5} \right),B\left( { - 3;3} \right),C\left( { - 1; - 2} \right),D\left( {5; - 10} \right).\) Hỏi \(G\left( {\frac{1}{3}; - 3} \right)\) là trọng tâm của tam giác nào dưới đây?
Cho \({\log _{12}}3 = a\). Tính \({\log _{24}}18\) theo \(a\).
Cho tứ diện ABCD có \(AB = AC,DB = DC.\) Khẳng định nào sau đây là đúng?
Có bao nhiêu số tự nhiên có 3 chữ số \(\overline {abc} \) sao cho a, b, c là độ dài 3 cạnh của một tam giác cân.
Gọi d là tiếp tuyến tại điểm cực đại của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\). Mệnh đề nào dưới đây đúng?
Tìm tập xác định của hàm số \(y = \frac{1}{{{{\log }_2}\left( {5 - x} \right)}}\)
Cho phương trình \(\sin \left( {2x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{{3\pi }}{4}} \right).\) Tính tổng các nghiệm thuộc khoảng \(\left( {0;\pi } \right)\) của phương trình trên.
Hệ số của số hạng chứa \(x^6\) trong khai triển nhị thức \({\left( {\frac{3}{x} - \frac{x}{3}} \right)^{12}}\) (với \(x \ne 0\)) là:
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Giải phương trình \(8.\cos 2x.\sin 2x.\cos 4x = - \sqrt 2 .\)