Câu hỏi Đáp án 2 năm trước 43

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(A,AB = 1cm,AC = \sqrt 3 cm\). Tam giác SAB, SAC lần lượt vuông tại BC. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng \(\frac{{5\sqrt 5 }}{6}c{m^3}\). Tính khoảng cách từ C tới (SAB).  

A. \(\frac{{\sqrt 3 }}{2}cm.\)

Đáp án chính xác ✅

B. \(\frac{{\sqrt 5 }}{2}cm.\)

C. \(\frac{{\sqrt 3 }}{4}cm.\)

D. \(\frac{{\sqrt 5 }}{4}cm.\)

Lời giải của giáo viên

verified HocOn247.com

Gọi I là trung điểm của SA.

Tam giác SAB, SAC vuông tại \(B,C \Rightarrow IS = IA = IB = IC \Rightarrow I\) là tâm mặt cầu ngoại tiếp chóp S.ABC.   

Gọi H là trung điểm của BC. Vì \(\Delta ABC\) vuông tại \(A \Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác ABC.

\( \Rightarrow IH \bot \left( {ABC} \right)\).

Gọi R là bán kính mặt cầu ngoại tiếp chóp S.ABC. Theo bài ra ta có:

\(\begin{array}{l}
\frac{4}{3}\pi {R^3} = \frac{{5\sqrt 5 \pi }}{6} \Leftrightarrow {R^3} = \frac{{5\sqrt 5 }}{8} = \frac{{\sqrt {125} }}{8} \Leftrightarrow R = \frac{{\sqrt 5 }}{2}\\
 \Rightarrow IS = IA = IB = IC = \frac{{\sqrt 5 }}{2}
\end{array}\)  

Xét tam giác vuông ABC có: \(BC = \sqrt {A{B^2} + A{C^2}}  = 2 \Rightarrow AH = 1\) 

Xét tam giác vuông IAH có: \(IH = \sqrt {I{A^2} - A{H^2}}  = \sqrt {\frac{5}{4} - 1}  = \frac{1}{2}\) 

\(\begin{array}{l}
{S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.1.\sqrt 3  = \frac{{\sqrt 3 }}{2}\\
 \Rightarrow {V_{I.ABC}} = \frac{1}{3}IH.{S_{\Delta ABC}} = \frac{1}{3}.\frac{1}{2}.\frac{{\sqrt 3 }}{2}
\end{array}\) 

Ta có:

\(\begin{array}{l}
SI \cap \left( {ABC} \right) = A \Rightarrow \frac{{d\left( {S;\left( {ABC} \right)} \right)}}{{d\left( {I;\left( {ABC} \right)} \right)}} = \frac{{SA}}{{IA}} = 2\\
 \Rightarrow \frac{{{V_{S.ABC}}}}{{{V_{S.IBC}}}} = 2 \Rightarrow {V_{S.ABC}} = 2{V_{I.ABC}} = 2.\frac{{\sqrt 3 }}{{12}} = \frac{{\sqrt 3 }}{6}
\end{array}\) 

Xét tam giác vuông SAB có \(IB = \frac{{\sqrt 5 }}{2} \Rightarrow SA = 2IB = \sqrt 5  \Rightarrow SB = \sqrt {S{A^2} - A{B^2}}  = 2\) 

\( \Rightarrow {S_{\Delta SAB}} = \frac{1}{2}.1.2 = 1\) 

Ta có \({V_{S.ABC}} = \frac{1}{3}d\left( {C;\left( {SAB} \right)} \right).{S_{\Delta SAB}} \Rightarrow d\left( {C;\left( {SAB} \right)} \right) = \frac{{3{V_{S.ABC}}}}{{{S_{\Delta SAB}}}} = \frac{{3.\frac{{\sqrt 3 }}{6}}}{1} = \frac{{\sqrt 3 }}{2}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Có bao nhiêu số hạng trong khai triển nhị thức \({\left( {2x - 3} \right)^{2018}}\) thành đa thức

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Cho hàm số \(f(x)\) liên tục trên đoạn [0;10] và \(\int_0^{10} {f\left( x \right)dx = 7} \) và \(\int_2^6 {f\left( x \right)dx = 3} \). Tính \(P = \int_0^2 {f\left( x \right)dx + \int_6^{10} {f\left( x \right)dx} } .\)  

Xem lời giải » 2 năm trước 44
Câu 3: Trắc nghiệm

Cho hình chóp S.ABC có đáy \(\Delta ABC\) vuông cân ở B, \(AC = a\sqrt 2 ,SA \bot \left( {ABC} \right),SA = a\). Gọi G là trọng tâm của \(\Delta SBC\), mp \(\left( \alpha  \right)\) đi qua AG và song song với BC chia khối chóp thành hai phần. Gọi V là thể tích của khối đa diện không chứa đỉnh S. Tính V.  

Xem lời giải » 2 năm trước 43
Câu 4: Trắc nghiệm

Cho \(\int {2x{{\left( {3x - 2} \right)}^6}dx = A{{\left( {3x - 2} \right)}^8} + B{{\left( {3x - 2} \right)}^7} + C} \) với \(A,B,C \in R\). Tính giá trị của biểu thức 12A + 7B.  

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{{x - 1}}{{4\sqrt {3x + 1}  - 3x - 5}}\).

Xem lời giải » 2 năm trước 43
Câu 6: Trắc nghiệm

Một người gửi tiết kiệm số tiền 80 000 000 đồng với lãi suất là 6,9%/năm. Biết rằng tiền lãi hàng năm được nhập vào tiền gốc, hỏi sau đúng 5 năm người đó có rút được cả gốc và lãi số tiền gần với con số nào dưới đây?

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Tìm tất cả các giá trị thực của tham số m để phương trình \({e^{3m}} + {e^m} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\) có nghiệm.   

Xem lời giải » 2 năm trước 42
Câu 8: Trắc nghiệm

Có bao nhiêu số tự nhiên có 4 chữ số được viết từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 sao cho số đó chia hết cho 15?

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Tập nghiệm của bất phương trình \({\left( {\frac{1}{{1 + {a^2}}}} \right)^{2x + 1}} > 1\) (với a là tham số, \(a \ne 0\)) là

Xem lời giải » 2 năm trước 41
Câu 10: Trắc nghiệm

Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn có dạng \(\overline {abcd} \), trong đó \(1 \le a \le b \le c \le d \le 9\).  

Xem lời giải » 2 năm trước 41
Câu 11: Trắc nghiệm

Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{x}{{x + 3}}\) trên đoạn [- 2;3] bằng  

Xem lời giải » 2 năm trước 41
Câu 12: Trắc nghiệm

Biết F(x) là nguyên hàm của hàm số \(1f\left( x \right) = \frac{{x - \cos x}}{{{x^2}}}\). Hỏi đồ thị của hàm số \(y=F(x)\) có bao nhiêu điểm cực trị? 

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số m trên đoạn \(\left[ { - 2018;2018} \right]\) để hàm số \(y = \ln \left( {{x^2} - 2x - m + 1} \right)\) có tập xác định R.          

Xem lời giải » 2 năm trước 40
Câu 14: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:

Hàm số đạt cực đại tại điểm nào trong các điểm sau đây?

Xem lời giải » 2 năm trước 40
Câu 15: Trắc nghiệm

Cho hàm số \(y=f(x)\) xác định và liên tục trên R, có bảng biến thiên như sau:

Mệnh đề nào sau đây là đúng?

Xem lời giải » 2 năm trước 40

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »