Lời giải của giáo viên
TXĐ: \(\left\{ \begin{array}{l}
3x + 1 \ge 0\\
4\sqrt {3x + 1} - 3x - 5 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge - \frac{1}{3}\\
3x + 1 - 4\sqrt {3x + 1} + 4 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge - \frac{1}{3}\\
{\left( {\sqrt {3x + 1} - 2} \right)^2} \ne 0
\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}
x \ge - \frac{1}{3}\\
\sqrt {3x + 1} - 2 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge - \frac{1}{3}\\
3x + 1 \ne 4
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge - \frac{1}{3}\\
x \ne 1
\end{array} \right.\)
Ta có:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{4\sqrt {3x + 1} - 3x - 5}} = \mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{ - {{\left( {\sqrt {3x + 1} - 2} \right)}^2}}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {\sqrt {3x + 1} + 2} \right)}}{{ - {{\left( {\sqrt {3x + 1} - 2} \right)}^2}\left( {\sqrt {3x + 1} + 2} \right)}}\\
= \mathop {\lim }\limits_{x \to 1} \frac{{\left( {1 - x} \right)\left( {\sqrt {3x + 1} + 2} \right)}}{{3\left( {\sqrt {3x + 1} - 2} \right)\left( {1 - x} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {3x + 1} + 2}}{{3\left( {\sqrt {3x + 1} - 2} \right)}} = + \infty
\end{array}\)
\( \Rightarrow x = 1\) là đường TCĐ của đồ thị hàm số.
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{4\sqrt {3x + 1} - 3x - 5}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - \frac{1}{x}}}{{4\sqrt {\frac{3}{x} + \frac{1}{{{x^2}}}} - 3 - \frac{5}{x}}} = - \frac{1}{3}\\
\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 1}}{{4\sqrt {3x + 1} - 3x - 5}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{1 - \frac{1}{x}}}{{ - 4\sqrt {\frac{3}{x} + \frac{1}{{{x^2}}}} - 3 - \frac{5}{x}}} = - \frac{1}{3}
\end{array}\)
\( \Rightarrow y = - \frac{1}{3}\) là đường TCN của đồ thị hàm số.
Vậy đồ thị hàm số có 2 đường tiệm cận.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f(x)\) liên tục trên đoạn [0;10] và \(\int_0^{10} {f\left( x \right)dx = 7} \) và \(\int_2^6 {f\left( x \right)dx = 3} \). Tính \(P = \int_0^2 {f\left( x \right)dx + \int_6^{10} {f\left( x \right)dx} } .\)
Một người gửi tiết kiệm số tiền 80 000 000 đồng với lãi suất là 6,9%/năm. Biết rằng tiền lãi hàng năm được nhập vào tiền gốc, hỏi sau đúng 5 năm người đó có rút được cả gốc và lãi số tiền gần với con số nào dưới đây?
Có bao nhiêu số hạng trong khai triển nhị thức \({\left( {2x - 3} \right)^{2018}}\) thành đa thức
Cho \(\int {2x{{\left( {3x - 2} \right)}^6}dx = A{{\left( {3x - 2} \right)}^8} + B{{\left( {3x - 2} \right)}^7} + C} \) với \(A,B,C \in R\). Tính giá trị của biểu thức 12A + 7B.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(A,AB = 1cm,AC = \sqrt 3 cm\). Tam giác SAB, SAC lần lượt vuông tại B và C. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng \(\frac{{5\sqrt 5 }}{6}c{m^3}\). Tính khoảng cách từ C tới (SAB).
Cho hình chóp S.ABC có đáy \(\Delta ABC\) vuông cân ở B, \(AC = a\sqrt 2 ,SA \bot \left( {ABC} \right),SA = a\). Gọi G là trọng tâm của \(\Delta SBC\), mp \(\left( \alpha \right)\) đi qua AG và song song với BC chia khối chóp thành hai phần. Gọi V là thể tích của khối đa diện không chứa đỉnh S. Tính V.
Tập nghiệm của bất phương trình \({\left( {\frac{1}{{1 + {a^2}}}} \right)^{2x + 1}} > 1\) (với a là tham số, \(a \ne 0\)) là
Tìm tất cả các giá trị thực của tham số m để phương trình \({e^{3m}} + {e^m} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\) có nghiệm.
Có bao nhiêu số tự nhiên có 4 chữ số được viết từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 sao cho số đó chia hết cho 15?
Cho hình trụ có thiết diện đi qua trục là một hình vuông có cạnh bằng 4a. Diện tích xung quanh của hình trụ là
Biết F(x) là nguyên hàm của hàm số \(1f\left( x \right) = \frac{{x - \cos x}}{{{x^2}}}\). Hỏi đồ thị của hàm số \(y=F(x)\) có bao nhiêu điểm cực trị?
Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn có dạng \(\overline {abcd} \), trong đó \(1 \le a \le b \le c \le d \le 9\).
Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{x}{{x + 3}}\) trên đoạn [- 2;3] bằng
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Hàm số đạt cực đại tại điểm nào trong các điểm sau đây?
Cho hàm số \(y=f(x)\) xác định và liên tục trên R, có bảng biến thiên như sau:
Mệnh đề nào sau đây là đúng?