Lời giải của giáo viên
Không gian mẫu \(n\left( \Omega \right) = {9.10^3} = 9000\).
Gọi A là biến cố: “số được chọn có dạng \(\overline {abcd} \), trong đó \(1 \le a \le b \le c \le d \le 9\)”
TH1: \(1 \le a < b < c < d \le 9\)
Chọn ngẫu nhiêu 4 số trong các số từ 1 đến 9 có \(C_9^4 = 126\) cách.
Có duy nhất một cách xếp các chữ số \(a, b, c, d\) theo thứ tự tăng dần, do đó trường hợp này có 126 số thỏa mãn.
TH2: \(1 \le a = b < c < d \le 9\). Số cần tìm có dạng \(\overline {aacd} \).
Chọn ngẫu nhiên 3 số trong các số từ 1 đến 9 có \(C_9^3 = 84\) cách.
Có duy nhất một cách xếp các chữ số \(a, c, d\) theo thứ tự tăng dần, do đó trường hợp này có 84 số thỏa mãn.
Tương tự như vậy, các trường hợp \(1 \le a < b = c < d \le 9,1 \le a < b < c = d \le 9\), mỗi trường hợp cũng có 84 số thỏa mãn.
TH3: \(1 \le a = b = c < d \le 9\). Số cần tìm có dạng \(\overline {aaad} \).
Chọn ngẫu nhiên 2 số trong các số từ 1 đến 9 có \(C_9^2=36\) cách.
Có duy nhất một cách xếp các chữ số \(a, d\) theo thứ tự tăng dần, do đó trường hợp này có 36 số thỏa mãn.
Tương tự như vậy, các trường hợp \(1 \le a = b < c = d \le 9,1 \le a < b = c = d \le 9\) mỗi trường hợp cũng có 36 số thỏa mãn.
TH4: \(1 \le a = b = c = d \le 9\). Số cần tìm có dạng \(\overline {aaaa} \). Có 9 số thỏa mãn.
\( \Rightarrow n\left( A \right) = 126 + 3.84 + 3.36 + 9 = 495\).
Vậy \(P\left( A \right) = \frac{{495}}{{9000}} = 0,055\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f(x)\) liên tục trên đoạn [0;10] và \(\int_0^{10} {f\left( x \right)dx = 7} \) và \(\int_2^6 {f\left( x \right)dx = 3} \). Tính \(P = \int_0^2 {f\left( x \right)dx + \int_6^{10} {f\left( x \right)dx} } .\)
Cho \(\int {2x{{\left( {3x - 2} \right)}^6}dx = A{{\left( {3x - 2} \right)}^8} + B{{\left( {3x - 2} \right)}^7} + C} \) với \(A,B,C \in R\). Tính giá trị của biểu thức 12A + 7B.
Cho hình chóp S.ABC có đáy \(\Delta ABC\) vuông cân ở B, \(AC = a\sqrt 2 ,SA \bot \left( {ABC} \right),SA = a\). Gọi G là trọng tâm của \(\Delta SBC\), mp \(\left( \alpha \right)\) đi qua AG và song song với BC chia khối chóp thành hai phần. Gọi V là thể tích của khối đa diện không chứa đỉnh S. Tính V.
Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{{x - 1}}{{4\sqrt {3x + 1} - 3x - 5}}\).
Có bao nhiêu số hạng trong khai triển nhị thức \({\left( {2x - 3} \right)^{2018}}\) thành đa thức
Một người gửi tiết kiệm số tiền 80 000 000 đồng với lãi suất là 6,9%/năm. Biết rằng tiền lãi hàng năm được nhập vào tiền gốc, hỏi sau đúng 5 năm người đó có rút được cả gốc và lãi số tiền gần với con số nào dưới đây?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(A,AB = 1cm,AC = \sqrt 3 cm\). Tam giác SAB, SAC lần lượt vuông tại B và C. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng \(\frac{{5\sqrt 5 }}{6}c{m^3}\). Tính khoảng cách từ C tới (SAB).
Tập nghiệm của bất phương trình \({\left( {\frac{1}{{1 + {a^2}}}} \right)^{2x + 1}} > 1\) (với a là tham số, \(a \ne 0\)) là
Tìm tất cả các giá trị thực của tham số m để phương trình \({e^{3m}} + {e^m} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\) có nghiệm.
Có bao nhiêu số tự nhiên có 4 chữ số được viết từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 sao cho số đó chia hết cho 15?
Cho hình trụ có thiết diện đi qua trục là một hình vuông có cạnh bằng 4a. Diện tích xung quanh của hình trụ là
Biết F(x) là nguyên hàm của hàm số \(1f\left( x \right) = \frac{{x - \cos x}}{{{x^2}}}\). Hỏi đồ thị của hàm số \(y=F(x)\) có bao nhiêu điểm cực trị?
Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{x}{{x + 3}}\) trên đoạn [- 2;3] bằng
Có bao nhiêu giá trị nguyên của tham số m trên đoạn \(\left[ { - 2018;2018} \right]\) để hàm số \(y = \ln \left( {{x^2} - 2x - m + 1} \right)\) có tập xác định R.
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0;2019) để \(\lim \sqrt {\frac{{{9^n} + {3^{n + 1}}}}{{{5^n} + {9^{n + a}}}}} \le \frac{1}{{2187}}\)?