Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt phẳng (ABC), AH là đường cao trong tam SAB. Trong các khẳng định sau, khẳng định nào là khẳng định sai?
A. \(AH \bot AC\)
B. \(AH \bot BC\)
C. \(SA \bot BC\)
D. \(AH \bot SC\)
Lời giải của giáo viên
Theo đề bài ta có: \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC \Rightarrow \) Đáp án C đúng.
Ta có: \(\Delta ABC\) vuông tại B \( \Rightarrow BC \bot BA\).
Lại có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\).
\( \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH \Rightarrow \) Đáp án B đúng.
Ta có : \(\left\{ \begin{array}{l}BC \bot AC\,\,\left( {cmt} \right)\\AH \bot SB\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC \Rightarrow \) Đáp án D đúng.
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \dfrac{{{x^2}}}{{1 - x}}\). Đạo hàm cấp 2018 của hàm số \(f\left( x \right)\) là:
Trong hệ tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng \(BC:\,\,x + 7y - 13 = 0\). Các chân đường cao kẻ từ B, C lần lượt là \(E\left( {2;5} \right);\,\,F\left( {0;4} \right)\). Biết tọa độ đỉnh A là \(A\left( {a;b} \right)\). Khi đó:
Giá trị nhỏ nhất của hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\) là:
Cho hàm số \(y = {x^3} - {x^2} + 2x + 5\) có đồ thị \(\left( C \right)\). Trong các tiếp tuyến của \(\left( C \right)\), tiếp tuyến có hệ số góc nhỏ nhất, thì hệ số góc của tiếp tuyến đó là
Cho hai số thực x, y thay đổi thỏa mãn điều kiện \({x^2} + {y^2} = 2\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 2\left( {{x^3} + {y^3}} \right) - 3xy\). Giá trị của \(M + m\) bằng:
Hàm số \(y = {x^3} - 3{x^2} - 5\) đồng biến trên khoảng nào dưới đây?
Gọi S là tập các giá trị dương của tham số m sao cho hàm số \(y = {x^3} - 3m{x^2} + 27x + 3m - 2\) đạt cực trị tại \({x_1};{x_2}\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| \le 5\). Biết \(S = \left( {a;b} \right]\). Tính \(T = 2b - a\) ?
Tập hợp các giá trị của tham số m để hàm số \(y =| 3{x^4} - 4{x^3} - 12{x^2} + m - 1|\) có 7 điểm cực trị là:
Trong không gian với hệ tọa độ \({\rm{Ox}}yz\)cho hai mặt phẳng \(\left( P \right):2x + my - z + 1 = 0\) và \(\left( Q \right):x + 3y + \left( {2m + 3} \right)z - 2 = 0\). Giá trị của \(m\) để \(\left( P \right) \bot \left( Q \right)\) là:
Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Cho hình hộp ABCD.A’B’C’D’ có tất cả các mặt là hình vuông cạnh a. Các điểm M, N lần lượt nằm trên AD’, DB sao cho \(AM = DN = x\,\,\left( {0 < x < a\sqrt 2 } \right)\). Khi x thay đổi, đường thẳng MN luôn song song với mặt phẳng cố định nào sau đây?
Giá trị của m làm cho phương trình \(\left( {m - 2} \right){x^2} - 2mx + m + 3 = 0\) có 2 nghiệm dương phân biệt là:
Hàm số có đạo hàm bằng \(2x + \dfrac{1}{{{x^2}}}\) là:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \dfrac{{mx + 1}}{{x + m}}\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\).
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là: