Câu hỏi Đáp án 2 năm trước 72

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt phẳng (ABC), AH là đường cao trong tam SAB. Trong các khẳng định sau, khẳng định nào là khẳng định sai?

A. \(AH \bot AC\)    

Đáp án chính xác ✅

B. \(AH \bot BC\)   

C. \(SA \bot BC\)  

D. \(AH \bot SC\) 

Lời giải của giáo viên

verified HocOn247.com

Theo đề bài ta có: \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC \Rightarrow \) Đáp án C đúng.

Ta có: \(\Delta ABC\) vuông tại B \( \Rightarrow BC \bot BA\).

Lại có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\).

\( \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH \Rightarrow \) Đáp án B đúng.

Ta có : \(\left\{ \begin{array}{l}BC \bot AC\,\,\left( {cmt} \right)\\AH \bot SB\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC \Rightarrow \) Đáp án D đúng.

 

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y = \dfrac{{{x^2}}}{{1 - x}}\). Đạo hàm cấp 2018 của hàm số \(f\left( x \right)\) là:

Xem lời giải » 2 năm trước 184
Câu 2: Trắc nghiệm

Trong hệ tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng \(BC:\,\,x + 7y - 13 = 0\). Các chân đường cao kẻ từ B, C lần lượt là \(E\left( {2;5} \right);\,\,F\left( {0;4} \right)\). Biết tọa độ đỉnh A là \(A\left( {a;b} \right)\). Khi đó:

Xem lời giải » 2 năm trước 88
Câu 3: Trắc nghiệm

Giá trị nhỏ nhất của hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\) là: 

Xem lời giải » 2 năm trước 87
Câu 4: Trắc nghiệm

Cho hàm số \(y = {x^3} - {x^2} + 2x + 5\) có đồ thị \(\left( C \right)\). Trong các tiếp tuyến của \(\left( C \right)\), tiếp tuyến có hệ số góc nhỏ nhất, thì hệ số góc của tiếp tuyến đó là

Xem lời giải » 2 năm trước 84
Câu 5: Trắc nghiệm

Cho hai số thực x, y thay đổi thỏa mãn điều kiện \({x^2} + {y^2} = 2\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 2\left( {{x^3} + {y^3}} \right) - 3xy\). Giá trị của \(M + m\) bằng:

Xem lời giải » 2 năm trước 84
Câu 6: Trắc nghiệm

Hàm số \(y = {x^3} - 3{x^2} - 5\) đồng biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 83
Câu 7: Trắc nghiệm

Gọi S là tập các giá trị dương của tham số m sao cho hàm số \(y = {x^3} - 3m{x^2} + 27x + 3m - 2\) đạt cực trị tại \({x_1};{x_2}\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| \le 5\). Biết \(S = \left( {a;b} \right]\). Tính \(T = 2b - a\) ?

Xem lời giải » 2 năm trước 83
Câu 8: Trắc nghiệm

Tập hợp các giá trị của tham số m để hàm số \(y =| 3{x^4} - 4{x^3} - 12{x^2} + m - 1|\) có 7 điểm cực trị là:

Xem lời giải » 2 năm trước 82
Câu 9: Trắc nghiệm

Trong không gian với hệ tọa độ \({\rm{Ox}}yz\)cho hai mặt phẳng \(\left( P \right):2x + my - z + 1 = 0\) và \(\left( Q \right):x + 3y + \left( {2m + 3} \right)z - 2 = 0\). Giá trị của \(m\) để \(\left( P \right) \bot \left( Q \right)\) là:

Xem lời giải » 2 năm trước 81
Câu 10: Trắc nghiệm

Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:

Xem lời giải » 2 năm trước 81
Câu 11: Trắc nghiệm

Cho hình hộp ABCD.A’B’C’D’ có tất cả các mặt là hình vuông cạnh a. Các điểm M, N lần lượt nằm trên AD’, DB sao cho \(AM = DN = x\,\,\left( {0 < x < a\sqrt 2 } \right)\). Khi x thay đổi, đường thẳng MN luôn song song với mặt phẳng cố định nào sau đây?

Xem lời giải » 2 năm trước 80
Câu 12: Trắc nghiệm

Giá trị của m làm cho phương trình \(\left( {m - 2} \right){x^2} - 2mx + m + 3 = 0\) có 2 nghiệm dương phân biệt là:

Xem lời giải » 2 năm trước 78
Câu 13: Trắc nghiệm

Hàm số có đạo hàm bằng  \(2x + \dfrac{1}{{{x^2}}}\) là:

Xem lời giải » 2 năm trước 77
Câu 14: Trắc nghiệm

Tìm tất cả các giá trị của tham số m để hàm số \(y = \dfrac{{mx + 1}}{{x + m}}\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\).

Xem lời giải » 2 năm trước 77
Câu 15: Trắc nghiệm

Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:

Xem lời giải » 2 năm trước 77

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »