Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với \(AB = a,\,BC = a\sqrt 3 \), cạnh \(SA = 2a\), \(SA\) vuông góc với mặt phẳng (ABCD). Gọi \(\alpha \) là góc giữa đường thẳng SC và mặt phẳng (ABCD). Giá trị \(\tan \alpha \) bằng:
A. \(\tan \alpha = 2\).
B. \(\tan \alpha = \sqrt 2 \).
C. \(\tan \alpha = 1\).
D. \(\tan \alpha = \dfrac{1}{2}\).
Lời giải của giáo viên
ABCD là hình chữ nhật \( \Rightarrow AC = \sqrt {A{B^2} + A{D^2}} = \sqrt {{a^2} + 3{a^2}} = 2a\)
\(\begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow \left( {\widehat {SC;\left( {ABCD} \right)}} \right) = \widehat {SCA}\\ \Rightarrow \alpha = \widehat {SCA}\end{array}\)\( \Rightarrow \tan \alpha = \dfrac{{SA}}{{AC}} = \dfrac{{2a}}{{2a}} = 1\).
Chọn: C
CÂU HỎI CÙNG CHỦ ĐỀ
Diện tích S của hình phẳng (H) giới hạn bởi hai đường cong \(y = - {x^3} + 12x\) và \(y = - {x^2}\) là:
Tập nghiệm S của bất phương trình \({\log _{\dfrac{1}{2}}}\left( {{x^2} - 3x + 2} \right) \ge - 1\) là:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết \(AB = BC = a\), \(AD = 2a,\,\)\(SA = \dfrac{{3a\sqrt 2 }}{2}\), \(SA \bot \left( {ABCD} \right)\). Gọi M, N theo thứ tự là trung điểm của SB, SA. Khoảng cách từ N đến mặt phẳng (MCD) bằng:
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng?
Họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{5x + 4}}\) là
Cho hình chóp đều \(S.ABCD\) có cạnh \(AB = a\), góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(45^0\). Thể tích khối chóp \(S.\,ABCD\) là
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y - 2z + 4 = 0\). Một vectơ pháp tuyến của mặt phẳng (P) là:
Cho hàm số bậc ba \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số \(g\left( x \right) = \dfrac{{\left( {{x^2} - 4x + 4} \right)\sqrt {x - 1} }}{{x\left[ {{f^2}\left( x \right) - f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?
Cho một cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = \dfrac{1}{2}\), \({u_2} = \dfrac{7}{2}\). Khi đó công sai d bằng:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, \(\widehat {ABC} = {30^0}\). SBC là tam giác đều cạnh a và mặt bên \(SBC\) vuông góc với đáy. Khoảng cách từ điểm C đến mặt phẳng (SAB) là:
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 16\) và điểm \(A\left( {1;2;3} \right)\). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau cắt mặt cầu theo ba đường tròn. Gọi S là tổng diện tích của ba hình tròn đó. Khi đó S bằng:
Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {x^2}{e^{{x^3} + 1}}\).
Cho số phức \(z = 2 + 5i\). Điểm biểu diễn số phức z trong mặt phẳng Oxy có tọa độ là:
Trong các hàm số sau đây, hàm số nào đồng biến trên \(\mathbb{R}\)
Cho số phức z thỏa mãn \(\left( {1 + 2i} \right)z = 6 - 3i\). Phần thực của số phức z là: