Lời giải của giáo viên
Gọi \(I=AC\cap BD\).
Ta có \(BI\bot AC\) (tính chất đường chéo trong hình vuông ABCD).
Mặt khác, \(BI\bot SA\) (vì \(SA\bot \left( ABCD \right)\) mà \(BI\subset \left( ABCD \right)\)).
Suy ra \(BI\bot \left( SAC \right)\). Khi đó góc giữa SB và \(\left( SAC \right)\) là góc giữa SB và SI hay góc \(\widehat{BSI}\).
Ta có hình vuông ABCD có cạnh 2a nên \(AC=BD=2a\sqrt{2}\). Suy ra \(BI=AI=a\sqrt{2}\).
Xét tam giác SAI vuông tại A ta có \(SI=\sqrt{S{{A}^{2}}+A{{I}^{2}}}=\sqrt{4{{a}^{2}}+2{{a}^{2}}}=a\sqrt{6}\).
Trong tam giác SIB vuông tại I ta có \(BI=a\sqrt{2};SI=a\sqrt{6}\) khi đó \(\tan \widehat{BSI}=\frac{BI}{SI}=\frac{a\sqrt{2}}{a\sqrt{6}}=\frac{\sqrt{3}}{3}\Rightarrow \widehat{BSI}=30{}^\circ\)
Vậy góc giữa SB và \(\left( SAC \right)\) bằng \({{30}^{0}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Thể tích của khối nón có chiều cao bằng \(\frac{a\sqrt{3}}{2}\) và bán kính đường tròn đáy bằng \(\frac{a}{2}\) là
Tính đạo hàm của hàm số \(f\left( x \right)=\ln x\).
Trong không gian Oxyz, cho điểm \(M\left( -1;2;2 \right)\). Đường thẳng đi qua M và song song với trục Oy có phương trình là
Cho một cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=\frac{1}{3}, {{u}_{8}}=26.\) Công sai của cấp số cộng đã cho là
Cho số phức \(z=a+bi\left( a,b\in \mathbb{R} \right)\). Số \(z+\overline{z}\) luôn là:
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Trong không gian với hệ tọa độ Oxyz, Phương trình của mặt cầu có đường kính AB với \(A\left( 2;1;0 \right)\), \(B\left( 0;1;2 \right)\) là
Một khối trụ có chiều cao và bán kính đường tròn đáy cùng bằng \(R\) thì có thể tích là
Số nghiệm thực của phương trình \({{\log }_{3}}\left( {{x}^{2}}-3x+9 \right)=2\) bằng
Trong không gian, điểm nào dưới đây thuộc mặt phẳng \(\left( \alpha \right):\,\,-x+y+2z-3=0\)?
Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \(\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-2}{3}\)?
Hàm số nào sau đây nghịch biến trên mỗi khoảng xác định của nó ?
Gọi m là giá trị nhỏ nhất và M là giá trị lớn nhất của hàm số \(f\left( x \right)=2{{x}^{3}}+3{{x}^{2}}-1\) trên đoạn \(\left[ -2;\,-\frac{1}{2} \right]\). Khi đó giá trị của M-m bằng