Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a,SA\bot \left( ABCD \right),SA=a.\) Gọi G là trọng tâm tam giác ABD, khi đó khoảng cách từ điểm G đến mặt phẳng (SBC) bằng:
A. \(\frac{a\sqrt{2}}{2}.\)
B. \(\frac{a\sqrt{2}}{3}.\)
C. \(\frac{a\sqrt{2}}{6}\)
D. \(\frac{a}{2}\)
Lời giải của giáo viên
Gọi O là giao điểm của AC và BD.
Khi đó: \(AG=\frac{2}{3}AO\) (tính chất trọng tâm tam giác)
\(\Rightarrow \frac{AG}{AC}=\frac{\frac{2}{3}AO}{AC}=\frac{2}{3}.\frac{1}{2}=\frac{1}{3}\Rightarrow \frac{GC}{AC}=\frac{2}{3}\Rightarrow \frac{d\left( G;\left( SBC \right) \right)}{d\left( A;\left( SBC \right) \right)}=\frac{2}{3}\)
Kẻ \(AH\bot SB\)
Ta có: \(SA\bot \left( ABCD \right)\Rightarrow SA\bot BC\)
Lại có: \(BC\bot AB\)
\(\Rightarrow BC\bot \left( SAB \right)\Rightarrow BC\bot AH\)
\(\Rightarrow AH\bot \left( SBC \right)\Rightarrow AH=d\left( A;\left( ABC \right) \right)\)
\(\Rightarrow d\left( G;\left( SBC \right) \right)=\frac{2}{3}AH.\)
Áp dụng hệ thức lượng cho \(\Delta SAB\) vuông tại A, có đường cao AH ta có:
\(AH=\frac{SA.AB}{\sqrt{S{{A}^{2}}+A{{B}^{2}}}}=\frac{{{a}^{2}}}{\sqrt{{{a}^{2}}+{{a}^{2}}}}=\frac{a\sqrt{2}}{2}.\)
\(\Rightarrow d\left( G;\left( SBC \right) \right)=\frac{2}{3}AH=\frac{2}{3}.\frac{a\sqrt{2}}{2}=\frac{a\sqrt{2}}{3}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Đồ thị hàm số \(y=\frac{{{x}^{4}}}{2}-{{x}^{2}}+3\) có mấy điểm cực trị
Cho lăng trụ đứng tam giác ABC.A'B'C'. Biết tam giác ABC đều cạnh a và \(AA'=a\sqrt{3}.\) Góc giữa hai đường thẳng AB' và mặt phẳng (A'B'C') bằng bao nhiêu?
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\) có đồ thị như hình vẽ bên.
Mệnh đề nào dưới đây đúng?
Tính thể tích V của khối lập phương ABCD.A'B'C'D'. Biết \(AC'=a\sqrt{3}.\)
Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+1\). Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\left| f\left( \sin x+\sqrt{3}\cos x \right)+m \right|\) có giá trị nhỏ nhất không vượt quá 5?
Hàm số \(y=\left| {{\left( x-1 \right)}^{3}}\left( x+1 \right) \right|\) có bao nhiêu điểm cực trị?
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và \(SA=2\sqrt{3}a.\) Tính thể tích V của khối chóp S.ABC.
Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y=\left( 3m+1 \right)x+3+m\) vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-1.\)
Cho đồ thị hàm số \(y=\frac{\sqrt{4-{{x}^{2}}}}{{{x}^{2}}-3x-4}\) có tất cả bao nhiêu đường tiệm cận?
Có bao nhiêu số có ba chữ số đôi một khác nhau mà các chữ số đó thuộc tập hợp \(\left\{ 1;2;3;...;9 \right\}?\)
Có tất cả 120 các chọn 3 học sinh từ nhóm n (chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây?
Biết đường thẳng \(y=\left( 3m-1 \right)x+6m+3\) cắt đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}+1\) tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi đó m thuộc khoảng nào dưới đây?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên \(SA=a\sqrt{5},\) mặt bên SAB là tam giác cân đỉnh S và thuộc mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AD và SC bằng: