Câu hỏi Đáp án 2 năm trước 36

Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a,SA\bot \left( ABCD \right),SA=a.\) Gọi G là trọng tâm tam giác ABD, khi đó khoảng cách từ điểm G đến mặt phẳng (SBC) bằng: 

A. \(\frac{a\sqrt{2}}{2}.\)

B. \(\frac{a\sqrt{2}}{3}.\)

Đáp án chính xác ✅

C. \(\frac{a\sqrt{2}}{6}\)

D. \(\frac{a}{2}\)

Lời giải của giáo viên

verified HocOn247.com

Gọi O là giao điểm của AC và BD. 

Khi đó: \(AG=\frac{2}{3}AO\) (tính chất trọng tâm tam giác) 

\(\Rightarrow \frac{AG}{AC}=\frac{\frac{2}{3}AO}{AC}=\frac{2}{3}.\frac{1}{2}=\frac{1}{3}\Rightarrow \frac{GC}{AC}=\frac{2}{3}\Rightarrow \frac{d\left( G;\left( SBC \right) \right)}{d\left( A;\left( SBC \right) \right)}=\frac{2}{3}\)

Kẻ \(AH\bot SB\)

Ta có: \(SA\bot \left( ABCD \right)\Rightarrow SA\bot BC\)

Lại có: \(BC\bot AB\)

\(\Rightarrow BC\bot \left( SAB \right)\Rightarrow BC\bot AH\)

\(\Rightarrow AH\bot \left( SBC \right)\Rightarrow AH=d\left( A;\left( ABC \right) \right)\)

\(\Rightarrow d\left( G;\left( SBC \right) \right)=\frac{2}{3}AH.\)

Áp dụng hệ thức lượng cho \(\Delta SAB\) vuông tại A, có đường cao AH ta có: 

\(AH=\frac{SA.AB}{\sqrt{S{{A}^{2}}+A{{B}^{2}}}}=\frac{{{a}^{2}}}{\sqrt{{{a}^{2}}+{{a}^{2}}}}=\frac{a\sqrt{2}}{2}.\)

\(\Rightarrow d\left( G;\left( SBC \right) \right)=\frac{2}{3}AH=\frac{2}{3}.\frac{a\sqrt{2}}{2}=\frac{a\sqrt{2}}{3}.\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Đồ thị trong hình là của hàm số nào?

Xem lời giải » 2 năm trước 45
Câu 2: Trắc nghiệm

Đồ thị hàm số \(y=\frac{{{x}^{4}}}{2}-{{x}^{2}}+3\) có mấy điểm cực trị

Xem lời giải » 2 năm trước 45
Câu 3: Trắc nghiệm

Cho lăng trụ đứng tam giác ABC.A'B'C'. Biết tam giác ABC đều cạnh a và \(AA'=a\sqrt{3}.\) Góc giữa hai đường thẳng AB' và mặt phẳng (A'B'C') bằng bao nhiêu? 

Xem lời giải » 2 năm trước 42
Câu 4: Trắc nghiệm

Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\) có đồ thị như hình vẽ bên.

Mệnh đề nào dưới đây đúng?

Xem lời giải » 2 năm trước 42
Câu 5: Trắc nghiệm

Tính thể tích V của khối lập phương ABCD.A'B'C'D'. Biết \(AC'=a\sqrt{3}.\)

Xem lời giải » 2 năm trước 42
Câu 6: Trắc nghiệm

Nhận định nào dưới đây là đúng?

Xem lời giải » 2 năm trước 42
Câu 7: Trắc nghiệm

Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+1\). Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\left| f\left( \sin x+\sqrt{3}\cos x \right)+m \right|\) có giá trị nhỏ nhất không vượt quá 5? 

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Hàm số \(y=\left| {{\left( x-1 \right)}^{3}}\left( x+1 \right) \right|\) có bao nhiêu điểm cực trị? 

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và \(SA=2\sqrt{3}a.\) Tính thể tích V của khối chóp S.ABC. 

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y=\left( 3m+1 \right)x+3+m\) vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-1.\)

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Cho đồ thị hàm số \(y=\frac{\sqrt{4-{{x}^{2}}}}{{{x}^{2}}-3x-4}\) có tất cả bao nhiêu đường tiệm cận? 

Xem lời giải » 2 năm trước 40
Câu 12: Trắc nghiệm

Có bao nhiêu số có ba chữ số đôi một khác nhau mà các chữ số đó thuộc tập hợp \(\left\{ 1;2;3;...;9 \right\}?\)

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Có tất cả 120 các chọn 3 học sinh từ nhóm n (chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây? 

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Biết đường thẳng \(y=\left( 3m-1 \right)x+6m+3\) cắt đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}+1\) tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi đó m thuộc khoảng nào dưới đây?

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên \(SA=a\sqrt{5},\) mặt bên SAB là tam giác cân đỉnh S và thuộc mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AD và SC bằng: 

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »