Cho hình chóp S.ABCD đáy là hình thang vuông tại A và B, \(AB = BC = a;\,\,AD = 2a\). Biết SA vuông góc với đáy (ABCD), \(SA = a\). Gọi M, N lần lượt là trung điểm SB, CD. Tính sin góc giữa đường thẳng MN và mặt phẳng (SAC).
A. \(\dfrac{{\sqrt 5 }}{5}\)
B. \(\dfrac{{\sqrt {55} }}{{10}}\)
C. \(\dfrac{{3\sqrt 5 }}{{10}}\)
D. \(\dfrac{{2\sqrt 5 }}{5}\)
Lời giải của giáo viên
Gọi P và Q lần lượt là trung điểm của AB và SC ta có : MQ // NP // BC \( \Rightarrow M,N,P,Q\) đồng phẳng.
Gọi \(F = NP \cap AC \Rightarrow \left( {MNPQ} \right) \cap \left( {SAC} \right) = QF\),
\(I = QF \cap MN \Rightarrow I = MN \cap \left( {SAC} \right)\).
Gọi E là trung điểm của AD, ABCE là hình vuông nên CE = a.
Xét tam giác ACD có \(CE = \dfrac{1}{2}AD = a \Rightarrow \Delta ACD\) vuông tại C \( \Rightarrow CD \bot AC\).
Ta có:
\(\left\{ \begin{array}{l}CD \bot AC\\CD \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SAC} \right) \Rightarrow NC \bot \left( {SAC} \right) \Rightarrow \)C là hình chiếu của N trên (SAC)
\( \Rightarrow \angle \left( {MN;\left( {SAC} \right)} \right) = \angle \left( {NI;CI} \right) = \angle NIC\).
Xét tam giác vuông CED có \(CD = \sqrt {C{E^2} + E{D^2}} = a\sqrt 2 \Rightarrow CN = \dfrac{{a\sqrt 2 }}{2}\).
Có \(MO = \dfrac{1}{2}BC = \dfrac{a}{2};\,\,NP = \dfrac{{AD + BC}}{2} = \dfrac{{3a}}{2}\); \(\dfrac{{PF}}{{BC}} = \dfrac{{AP}}{{AB}} = \dfrac{1}{2} \Rightarrow PF = \dfrac{a}{2} \Rightarrow FN = a\).
Áp dụng định lí Ta-lét ta có: \(\dfrac{{IN}}{{IM}} = \dfrac{{NF}}{{MQ}} = 2 \Rightarrow IN = 2IM \Rightarrow IN = \dfrac{2}{3}MN\).
Xét tam giác vuông MNP có \(MN = \sqrt {M{P^2} + N{P^2}} = \sqrt {{{\left( {\dfrac{{SA}}{2}} \right)}^2} + N{P^2}} = \dfrac{{a\sqrt {10} }}{2} \Rightarrow IN = \dfrac{2}{3}.\dfrac{{a\sqrt {10} }}{2} = \dfrac{{a\sqrt {10} }}{3}\).
Xét tam giác vuông NIC : \(\sin \angle NIC = \dfrac{{CN}}{{NI}} = \dfrac{{\dfrac{{a\sqrt 2 }}{2}}}{{\dfrac{{a\sqrt {10} }}{3}}} = \dfrac{{3\sqrt 5 }}{{10}}\).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \dfrac{{{x^2}}}{{1 - x}}\). Đạo hàm cấp 2018 của hàm số \(f\left( x \right)\) là:
Trong hệ tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng \(BC:\,\,x + 7y - 13 = 0\). Các chân đường cao kẻ từ B, C lần lượt là \(E\left( {2;5} \right);\,\,F\left( {0;4} \right)\). Biết tọa độ đỉnh A là \(A\left( {a;b} \right)\). Khi đó:
Giá trị nhỏ nhất của hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\) là:
Cho hàm số \(y = {x^3} - {x^2} + 2x + 5\) có đồ thị \(\left( C \right)\). Trong các tiếp tuyến của \(\left( C \right)\), tiếp tuyến có hệ số góc nhỏ nhất, thì hệ số góc của tiếp tuyến đó là
Cho hai số thực x, y thay đổi thỏa mãn điều kiện \({x^2} + {y^2} = 2\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 2\left( {{x^3} + {y^3}} \right) - 3xy\). Giá trị của \(M + m\) bằng:
Hàm số \(y = {x^3} - 3{x^2} - 5\) đồng biến trên khoảng nào dưới đây?
Gọi S là tập các giá trị dương của tham số m sao cho hàm số \(y = {x^3} - 3m{x^2} + 27x + 3m - 2\) đạt cực trị tại \({x_1};{x_2}\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| \le 5\). Biết \(S = \left( {a;b} \right]\). Tính \(T = 2b - a\) ?
Trong không gian với hệ tọa độ \({\rm{Ox}}yz\)cho hai mặt phẳng \(\left( P \right):2x + my - z + 1 = 0\) và \(\left( Q \right):x + 3y + \left( {2m + 3} \right)z - 2 = 0\). Giá trị của \(m\) để \(\left( P \right) \bot \left( Q \right)\) là:
Tập hợp các giá trị của tham số m để hàm số \(y =| 3{x^4} - 4{x^3} - 12{x^2} + m - 1|\) có 7 điểm cực trị là:
Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Cho hình hộp ABCD.A’B’C’D’ có tất cả các mặt là hình vuông cạnh a. Các điểm M, N lần lượt nằm trên AD’, DB sao cho \(AM = DN = x\,\,\left( {0 < x < a\sqrt 2 } \right)\). Khi x thay đổi, đường thẳng MN luôn song song với mặt phẳng cố định nào sau đây?
Giá trị của m làm cho phương trình \(\left( {m - 2} \right){x^2} - 2mx + m + 3 = 0\) có 2 nghiệm dương phân biệt là:
Hàm số có đạo hàm bằng \(2x + \dfrac{1}{{{x^2}}}\) là:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \dfrac{{mx + 1}}{{x + m}}\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\).
Đạo hàm của hàm số \(y = \sin \left( {\dfrac{{3\pi }}{2} - 4x} \right)\) là: