Cho hình chóp S.ABCD với ABCD là hình vuông cạnh a. Mặt bên SAB là tam giác cân tại S và nằm trên mặt phẳng vuông góc với mặt phẳng đáy. Cạnh bên SC tạo với đáy một góc \(60{}^\circ \). Tính thể tích khối chóp S.ABCD.
A. \(\frac{{{a^3}\sqrt {15} }}{2}\)
B. \(\frac{{{a^3}\sqrt {15} }}{6}\)
C. \(\frac{{{a^3}\sqrt 6 }}{3}\)
D. \(\frac{{{a^3}\sqrt 3 }}{6}\)
Lời giải của giáo viên
Gọi I là trung điểm của AB.
Ta có: \(\Delta SAB$ cân tại S \(\Rightarrow SI\bot AB\) (1)
Mặt khác: \(\left\{ \begin{align} & \left( SAB \right)\bot \left( ABCD \right) \\ & \left( SAB \right)\cap \left( ABCD \right)=AB \\ \end{align} \right.\) (2)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\), suy ra: \(SI\bot \left( ABCD \right)\)
\(\Rightarrow SI\) là chiều cao của hình chóp S.ABCD
\(\Rightarrow IC\) là hình chiếu của SC lên mặt phẳng \(\left( ABCD \right)\)
\(\Rightarrow \widehat{\left( SC,\left( ABCD \right) \right)}=\widehat{\left( SC,IC \right)}=\widehat{SCI}=60{}^\circ \)
Xét \(\Delta IBC\) vuông tại B, ta có: \(IC=\sqrt{I{{B}^{2}}+B{{C}^{2}}}=\sqrt{{{\left( \frac{a}{2} \right)}^{2}}+{{a}^{2}}}=\frac{a\sqrt{5}}{2}\)
Xét \(\Delta SIC\) vuông tại I, ta có: \(SI=IC.\tan 60{}^\circ =\frac{a\sqrt{5}}{2}.\sqrt{3}=\frac{a\sqrt{15}}{2}\)
Vậy thể tích khối chóp S.ABCD là: \(V=\frac{1}{3}.{{S}_{ABCD}}.SI=\frac{1}{3}.{{a}^{2}}.\frac{a\sqrt{15}}{2}=\frac{{{a}^{3}}\sqrt{15}}{6}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \frac{{2x - 1}}{{x + 1}}\). Mệnh đề nào dưới đây là đúng.
Cho khối chóp S.ABC có \(SA\,\bot \,\,\left( ABC \right)\), tam giác ABC vuông tại B, \(AC=\,2a, BC=a,SB=2a\sqrt{3}\). Tính góc giữa SA và mặt phẳng \(\,\left( SBC \right)\).
Điểm nào trong hình vẽ bên là điểm biểu diễn của số phức \(z = - 1 + 2i?\)
Cho khối chóp có diện tích đáy bằng 6cm2 và có chiều cao là 2cm. Thể tích của khối chóp đó là:
Cho số phức z = a + bi ( với \(a,b \in R\)) thỏa \(\left| z \right|\left( {2 + i} \right) = z - 1 + i\left( {2z + 3} \right)\). Tính S = a + b.
Họ nguyên hàm của hàm số \(f\left( x \right) = {x^2}\) là
Tổng lập phương các nghiệm thực của phương trình \({3^{{x^2} - 4x + 5}} = 9\) là
Cho số phức \({{z}_{1}}=3+2i\), \(\,{{z}_{2}}=6+5i\). Tìm số phức liên hợp của số phức \(z=6{{z}_{1}}+5{{z}_{2}}\)
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình tham số của đường thẳng đi qua hai điểm A(1;0;1) và B(3;2;-1).
Trong không gian với trục hệ tọa độ Oxyz, cho \(\overrightarrow{a}=-\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}.\) Tọa độ của vectơ \(\overrightarrow{a}\) là:
Một nguyên hàm của hàm số \(f(x) = {(x + 1)^3}\) là
Cho \(\int\limits_0^1 {\left[ {f\left( x \right) - 2g\left( x \right)} \right]{\rm{d}}x} = 12\) và \(\int\limits_0^1 {g\left( x \right){\rm{d}}x} = 5\), khi đó \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \) bằng
Đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 4}}{{x + 2}}\) là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} + 4x - 2y - 4 = 0\).Tính bán kính R của (S).