Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và chiều cao bằng \(a\sqrt{2}.\) Tính khoảng cách d từ tâm O của đáy ABCD đến một mặt bên theo a.
A. \(d = \frac{{a\sqrt 5 }}{2}.\)
B. \(d = \frac{{a\sqrt 3 }}{2}.\)
C. \(d = \frac{{2a\sqrt 5 }}{3}.\)
D. \(d = \frac{{a\sqrt 2 }}{3}.\)
Lời giải của giáo viên
Kẻ \(OH \bot BC,\;OK \bot SH\)
Ta có: \(\left\{ \begin{array}{l} OH \bot BC\\ SO \bot BC \end{array} \right. \Rightarrow BC \bot \left( {SOH} \right) \Rightarrow \left\{ \begin{array}{l} OK \bot BC\\ OK \bot SH \end{array} \right. \Rightarrow OK \bot \left( {SBC} \right) \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OK\)
Vì \(OH = \frac{a}{2};SO = a\sqrt 2 \Rightarrow \frac{1}{{O{K^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{H^2}}} \Rightarrow O{K^2} = \frac{{2{a^2}}}{9} \Rightarrow OK = \frac{{a\sqrt 2 }}{3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \frac{{2x - 1}}{{x + 1}}\). Mệnh đề nào dưới đây là đúng.
Cho khối chóp S.ABC có \(SA\,\bot \,\,\left( ABC \right)\), tam giác ABC vuông tại B, \(AC=\,2a, BC=a,SB=2a\sqrt{3}\). Tính góc giữa SA và mặt phẳng \(\,\left( SBC \right)\).
Điểm nào trong hình vẽ bên là điểm biểu diễn của số phức \(z = - 1 + 2i?\)
Cho khối chóp có diện tích đáy bằng 6cm2 và có chiều cao là 2cm. Thể tích của khối chóp đó là:
Cho số phức z = a + bi ( với \(a,b \in R\)) thỏa \(\left| z \right|\left( {2 + i} \right) = z - 1 + i\left( {2z + 3} \right)\). Tính S = a + b.
Tổng lập phương các nghiệm thực của phương trình \({3^{{x^2} - 4x + 5}} = 9\) là
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình tham số của đường thẳng đi qua hai điểm A(1;0;1) và B(3;2;-1).
Họ nguyên hàm của hàm số \(f\left( x \right) = {x^2}\) là
Cho \(\int\limits_0^1 {\left[ {f\left( x \right) - 2g\left( x \right)} \right]{\rm{d}}x} = 12\) và \(\int\limits_0^1 {g\left( x \right){\rm{d}}x} = 5\), khi đó \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \) bằng
Trong không gian với trục hệ tọa độ Oxyz, cho \(\overrightarrow{a}=-\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}.\) Tọa độ của vectơ \(\overrightarrow{a}\) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} + 4x - 2y - 4 = 0\).Tính bán kính R của (S).
Cho số phức \({{z}_{1}}=3+2i\), \(\,{{z}_{2}}=6+5i\). Tìm số phức liên hợp của số phức \(z=6{{z}_{1}}+5{{z}_{2}}\)
Đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 4}}{{x + 2}}\) là
Một nguyên hàm của hàm số \(f(x) = {(x + 1)^3}\) là