Lời giải của giáo viên
Gọi \(a\,;\,b\,;\,c\) lần lượt là độ dài các cạnh \(AB,AD,A{A}'\) của hình hộp chữ nhật \(ABCD.{A}'{B}'{C}'{D}'\)
Ta có các đường chéo của các hình chữ nhật \(ABCD\,\,;\,AB{B}'{A}'\,;\,AD{D}'{A}'\) lần lượt là \(\sqrt{5}\,;\,\sqrt{10\,}\,;\sqrt{13}\) nên ta có hệ phương trình \(\left\{ \begin{array}{l}
{a^2} + {c^2} = 10\\
{a^2} + {b^2} = 5\\
{b^2} + {c^2} = 13
\end{array} \right.\)
Giải hệ phương trình ta có \(a=1\,;b=2\,;\,c=3\). Vậy ta có \({{V}_{ABCD.{A}'{B}'{C}'{D}'}}=abc=6\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y=f(x) có đạo hàm trên R và có đồ thị hàm số f’(x) như hình vẽ bên.
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(g\left( x \right)=f\left( x \right)-mx\) có đúng hai điểm cực tiểu?
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}
{\frac{{2{x^2} - 3x + 1}}{{x - 1}}{\rm{khi}}x \ne 1}\\
{{\rm{2}}a + {\rm{1 khi }}x = 1}
\end{array}} \right.\) Tìm giá trị của tham số a để hàm số \(f\left( x \right)\) liên tục tại \(x=1\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=2a,\,\,AD=a\). Hình chiếu của S lên mặt phẳng đáy là trung điểm H của cạnh AB; góc tạo bởi cạnh SC và mặt phẳng đáy là \({{45}^{o}}.\) Thể tíchkhối chóp S.ABCD là
Cho hàm số \(y=f\left( x \right)\) có bảng xét dấu đạo hàm như sau
Hàm số \(y=f\left( 3-2x \right)\) nghịch biến trên khoảng nào dưới đây?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Biết giới hạn \(\lim \left[ n\left( \sqrt{{{n}^{2}}+3}-\sqrt{{{n}^{2}}+2} \right) \right]=\frac{a}{b}\) với \(a,\,\,b\in \mathbb{N}\) và \(\frac{a}{b}\) là phân số tối giản. Khi đó, giá trị \(2a+b\) bằng
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( -20;20 \right)\) để với mọi cặp hai số \(\left( x;y \right)\)có tổng lớn hơn 1 đều đồng thời thỏa mãn \({{e}^{3x+y}}-{{e}^{2x-2y+1}}=1-x-3y\) và \(\log _{3}^{2}\left( 2x+4y-1 \right)+2\left( m-1 \right){{\log }_{3}}\left( 1-2y \right)+{{m}^{2}}-9>0\)?
Cho hình bát diện đều \(ABCDEF\) như hình vẽ. Tổng số cạnh và mặt của hình bát diện bằng bao nhiêu?
Cho \(a,\,\,b\) là hai số dương với \(a\ne 1\) thỏa mãn \({{\log }_{a}}b=3.\) Khi đó, giá trị \({{\log }_{b}}\left( \frac{{{a}^{2}}}{b} \right)\) bằng:
Giá trị lớn nhất của hàm số \(y=\frac{{{x}^{2}}-3x}{x+1}\) trên đoạn \(\left[ -4;-2 \right]\) bằng
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có cạnh \(A{A}'=a\), đáy là tam giác \(ABC\) vuông tại \(A\) có \(BC=2a\), \(AB=a\sqrt{3}\). Tính khoảng cách từ đường thẳng \(A{A}'\) đến mặt phẳng \(\left( BC{C}'{B}' \right)\).
Cho hình trụ có thiết diện qua trục là một hình vuông, diện tích mỗi mặt đáy bằng \(9\pi \left( c{{m}^{\text{2}}} \right).\)
Tính diện tích xung quanh hình trụ đó.
Cho tập \(A=\left\{ 1,2,3,4,5,6 \right\}\). Trong các số tự nhiên gồm 6 chữ số được lập từ các chữ số thuộc tập , chọn ngẫu nhiên một số. Tính xác suất để trong số đó luôn xuất hiện chữ số , các chữ số còn lại đôi một khác nhau.
Hàm số nào dưới đây có giá trị nhỏ nhất trên tập xác định?