Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( -20;20 \right)\) để với mọi cặp hai số \(\left( x;y \right)\)có tổng lớn hơn 1 đều đồng thời thỏa mãn \({{e}^{3x+y}}-{{e}^{2x-2y+1}}=1-x-3y\) và \(\log _{3}^{2}\left( 2x+4y-1 \right)+2\left( m-1 \right){{\log }_{3}}\left( 1-2y \right)+{{m}^{2}}-9>0\)?
A. 15
B. 17
C. 14
D. 16
Lời giải của giáo viên
Ta có \({{e}^{3x+y}}-{{e}^{2x-2y+1}}=1-x-3y\)\(\Leftrightarrow {{e}^{3x+y}}+3x+y={{e}^{2x-2y+1}}+2x-2y+1\,\,(*)\)
Xét hàm số \(f\left( t \right)={{e}^{t}}+t\) có \({f}'\left( t \right)={{e}^{t}}+1>0,\,\forall t\).Do đó:
\((*)\Leftrightarrow f\left( 3x+y \right)=f\left( 2x-2y+1 \right)\)\(\Leftrightarrow 3x+y=2x-2y+1\)\(\Leftrightarrow x+y=1-2y>1\).
Khi đó ta có
\(\log _{3}^{2}\left( 2x+4y-1 \right)+2\left( m-1 \right){{\log }_{3}}\left( 1-2y \right)+{{m}^{2}}-9>0\)
\(\Leftrightarrow \log _{3}^{2}\left( 1-2y \right)+2\left( m-1 \right){{\log }_{3}}\left( 1-2y \right)+{{m}^{2}}-9>0\)
Đặt \(u={{\log }_{3}}\left( 1-2y \right),\,\,u>0\), yêu cầu bài toán trở thành tìm m để bất phương trình\({{u}^{2}}+2\left( m-1 \right)u+{{m}^{2}}-9>0,\,\,\forall u>0\)
Khi đó ta xét 3 trường hợp:
Trường hợp 1: \({\Delta }'<0\Leftrightarrow 10-2m<0\Leftrightarrow m>5\).
Trường hợp 2:
\(\begin{array}{l}
\left\{ \begin{array}{l}
\Delta ' = 0\\
- \frac{b}{{2a}} \le 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
10 - 2m = 0\\
1 - m \le 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m = 5\\
m \ge 1
\end{array} \right. \Leftrightarrow m = 5
\end{array}\)
Trường hợp 3:
\(\begin{array}{l}
\left\{ \begin{array}{l}
\Delta ' > 0\\
P \ge 0\\
S < 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
- 2m + 10 > 0\\
{m^2} - 9 \ge 0\\
- 2\left( {m - 1} \right) < 0
\end{array} \right.\\
\Leftrightarrow 3 \le m < 5
\end{array}\)
Kết hợp các trường hợp ta được \(m\ge 3\).
Kết hợp điều kiện ta được \(m\in \left\{ 3;\,\,4;\,...;\,\,19 \right\}\).
Có 17 giá trị m thỏa mãn.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y=f(x) có đạo hàm trên R và có đồ thị hàm số f’(x) như hình vẽ bên.
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(g\left( x \right)=f\left( x \right)-mx\) có đúng hai điểm cực tiểu?
Cho hình hộp chữ nhật \(ABCD.{A}'{B}'{C}'{D}'\) các đường chéo của các hình chữ nhật \(ABCD\,\,;\,AB{B}'{A}'\,;\,AD{D}'{A}'\) lần lượt là \(\sqrt{5}\,;\,\sqrt{10\,}\,;\sqrt{13}\). Thể tích khối hộp chữ nhật đã cho là
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}
{\frac{{2{x^2} - 3x + 1}}{{x - 1}}{\rm{khi}}x \ne 1}\\
{{\rm{2}}a + {\rm{1 khi }}x = 1}
\end{array}} \right.\) Tìm giá trị của tham số a để hàm số \(f\left( x \right)\) liên tục tại \(x=1\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=2a,\,\,AD=a\). Hình chiếu của S lên mặt phẳng đáy là trung điểm H của cạnh AB; góc tạo bởi cạnh SC và mặt phẳng đáy là \({{45}^{o}}.\) Thể tíchkhối chóp S.ABCD là
Cho hàm số \(y=f\left( x \right)\) có bảng xét dấu đạo hàm như sau
Hàm số \(y=f\left( 3-2x \right)\) nghịch biến trên khoảng nào dưới đây?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Biết giới hạn \(\lim \left[ n\left( \sqrt{{{n}^{2}}+3}-\sqrt{{{n}^{2}}+2} \right) \right]=\frac{a}{b}\) với \(a,\,\,b\in \mathbb{N}\) và \(\frac{a}{b}\) là phân số tối giản. Khi đó, giá trị \(2a+b\) bằng
Cho hình bát diện đều \(ABCDEF\) như hình vẽ. Tổng số cạnh và mặt của hình bát diện bằng bao nhiêu?
Cho \(a,\,\,b\) là hai số dương với \(a\ne 1\) thỏa mãn \({{\log }_{a}}b=3.\) Khi đó, giá trị \({{\log }_{b}}\left( \frac{{{a}^{2}}}{b} \right)\) bằng:
Cho tập \(A=\left\{ 1,2,3,4,5,6 \right\}\). Trong các số tự nhiên gồm 6 chữ số được lập từ các chữ số thuộc tập , chọn ngẫu nhiên một số. Tính xác suất để trong số đó luôn xuất hiện chữ số , các chữ số còn lại đôi một khác nhau.
Cho hình trụ có thiết diện qua trục là một hình vuông, diện tích mỗi mặt đáy bằng \(9\pi \left( c{{m}^{\text{2}}} \right).\)
Tính diện tích xung quanh hình trụ đó.
Giá trị lớn nhất của hàm số \(y=\frac{{{x}^{2}}-3x}{x+1}\) trên đoạn \(\left[ -4;-2 \right]\) bằng
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có cạnh \(A{A}'=a\), đáy là tam giác \(ABC\) vuông tại \(A\) có \(BC=2a\), \(AB=a\sqrt{3}\). Tính khoảng cách từ đường thẳng \(A{A}'\) đến mặt phẳng \(\left( BC{C}'{B}' \right)\).
Bất phương trình \({{2}^{2x}}-{{18.2}^{x}}+32\ge 0\) có tập nghiệm là