Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác vuông tại \(A,AB=a,AC=a\sqrt{2}.\) Biết góc giữa hai mặt phẳng \(\left( AB'C' \right)\) và \(\left( ABC \right)\) bằng \({{60}^{0}}\) và hình chiếu của A lên \(\left( A'B'C' \right)\) là trung điểm H của đoạn thẳng A'B'. Tính bán kính mặt cầu ngoại tiếp tứ diện A.HB'C' theo a.
A. \(\frac{{a\sqrt {21} }}{7}.\)
B. \(\frac{{3a\sqrt 6 }}{8}.\)
C. \(\frac{{a\sqrt {62} }}{8}.\)
D. \(\frac{{2a\sqrt {21} }}{7}.\)
Lời giải của giáo viên
Gọi M là trung điểm B'C' và N là hình chiếu của H trên B'C'. Ta có
\(\left\{ \begin{array}{l} B'C' \bot HN\\ B'C' \bot AH \end{array} \right. \Rightarrow B'C' \bot \left( {AHN} \right) \Rightarrow B'C' \bot AN.\)
\(\left\{ \begin{array}{l} \left( {AB'C'} \right) \cap \left( {A'B'C'} \right) = B'C'\\ B'C' \bot HN\\ B'C' \bot AN \end{array} \right.\)
\(\Rightarrow \left( \left( A'B'C' \right),\left( AB'C' \right) \right)=\widehat{ANH}={{60}^{0}}\)
Ta có \(B'C'=\sqrt{A'B{{'}^{2}}+A'C{{'}^{2}}}=a\sqrt{3}\)
\(\frac{1}{H{{N}^{2}}}=\frac{1}{H{{B}^{2}}}+\frac{1}{H{{M}^{2}}}\Rightarrow HN=\frac{a\sqrt{6}}{6}$ và \(AH=HN.\tan {{60}^{0}}=\frac{a\sqrt{2}}{2}.\)
Chọn hệ trục tọa độ Oxyz sao cho H trùng với O các điểm B',M,A lần lượt thuộc các tia Ox,Oy,Oz.
Ta có \(H\left( 0;0;0 \right),B'\left( \frac{a}{2};0;0 \right),A\left( 0;0;\frac{a\sqrt{2}}{2} \right),C'\left( -\frac{a}{2};a\sqrt{2};0 \right).\)
Gọi \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2Ax-2By-2Cz+D=0\) là phương trình mặt cầu ngoại tiếp tứ diện AHB'C'. Ta có
\(\left\{ \begin{array}{l} D = 0\\ 2A\frac{a}{2} = {\left( {\frac{a}{2}} \right)^2}\\ 2C.a\frac{{\sqrt 2 }}{2} = {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2}\\ 2A.\left( { - \frac{a}{2}} \right) + 2B.a\sqrt 2 = {\left( { - \frac{a}{2}} \right)^2} + {\left( {a\sqrt 2 } \right)^2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} A = \frac{a}{4}\\ B = \frac{5}{{4\sqrt 2 }}\\ C = \frac{a}{{2\sqrt 2 }}\\ D = 0 \end{array} \right.\)
\(R = \sqrt {{A^2} + {B^2} + {C^2} - D} = \frac{{a\sqrt {62} }}{8}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tích phân \(I=\int\limits_{0}^{\frac{\pi }{3}}{\sin xdx}\) bằng
Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC=a. Dựng đoạn thẳng SH vuông góc với mặt phẳng \(\left( ABC \right)\) với SH=2a. Khoảng cách từ điểm C đến mặt phẳng \(\left( SAB \right)\) là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y-4z=0.\) Viết phương trình mặt phẳng \(\left( P \right)\) tiếp xúc với mặt cầu \(\left( S \right)\) tại điểm \(A\left( 3;4;3 \right).\)
Có bao nhiêu số thực a để \(\int\limits_{0}^{1}{\frac{x}{a+{{x}^{2}}}dx}=1?\)
Phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{1-2x}{-x+2}\) lần lượt là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt đáy và \(SA=a\sqrt{2}.\) Tìm số đo của góc giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right)\).
Cho hàm số \(y=f\left( x \right)\). Đồ thị hàm số \(y=f'\left( x \right)\) như hình bên. Tìm số điểm cực trị của hàm số \(g\left( x \right)=f\left( {{x}^{2}}-3 \right).\)
Tìm tập hợp tất cả các giá trị thực của tham số $m$ để bất phương trình \({{\log }_{4}}\left( {{x}^{2}}-x-m \right)\ge {{\log }_{2}}\left( x+2 \right)\) có nghiệm.
Nghiệm của phương trình \({{\log }_{2}}\left( 3x-8 \right)=2\) là
Cho số phức \(z=2-3i.\) Số phức liên hợp của \(z\) là
Họ nguyên hàm của hàm số \(f\left( x \right)=\sin 2x\) là
Tọa độ giao điểm M của đồ thị hàm số \(y={{x}^{3}}+3x-4\) và đường thẳng y=2x-4.