Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại B, \(AB = a,A'B = a\sqrt 3 \) . Thể tích khối lăng trụ ABC.A’B’C’ bằng:
A. \(\frac{{{a^3}\sqrt 3 }}{2}\)
B. \(\frac{{{a^3}}}{6}\)
C. \(\frac{{{a^3}}}{2}\)
D. \(\frac{{{a^3}\sqrt 2 }}{2}\)
Lời giải của giáo viên
Do tam giác A'AB vuông tại A nên theo pytago ta có:
\(A'{B^2} = A{A'^2} + A{B^2} \Leftrightarrow AA' = \sqrt {A'{B^2} - A{B^2}} = \sqrt {{{\left( {a\sqrt 3 } \right)}^2} - {a^2}} = a\sqrt 2 \)
Lại có tam giác ABC vuông cân tại B nên \({S_{ABC}} = \frac{1}{2}A{B^2} = \frac{1}{2}{a^2}.\)
Thể tích khối lăng trụ đã cho: \({V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = a\sqrt 2 .\frac{1}{2}{a^2} = \frac{{{a^3}\sqrt 2 }}{2}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y = f(x) liên tục trên đoạn [-2; 2] và có đồ thị như hình vẽ:
Số nghiệm của phương trình \(3f(x + 2) - 4 = 0\) trên đoạn [-2; 2] là?
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SC vuông góc với mặt phẳng \(\left( {ABC} \right),SC = a\). Thể tích khối chóp S.ABC bằng:
Cho hàm số \(y = \frac{{x - 1}}{{x + 1}}.\) Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1;0) là:
Trung điểm các cạnh của hình tứ diện đều là đỉnh của hình:
Giá trị nhỏ nhất của hàm số \(y = 3c{\rm{os}}2x - 4\sin x\) là:
Cho hàm số có đô thị như hình vẽ dưới đây. Chọn kết luận sai trong các kết luận sau:
Cho hàm số \(y = \frac{{8x - 5}}{{x + 3}}\) . Kết luận nào sau đây là đúng ?
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Khẳng định nào sau đây là sai?
Tìm tất cả các giá trị của tham số m để phương trình \(x - m - \sqrt {9 - {x^2}} = 0\) có đúng 1 nghiệm dương?
Hình lăng trụ có thể có số cạnh là số nào sau đây?
Với giá trị nào của tham số m để đồ thị hàm số \(y = x - \sqrt {m{x^2} - 3x + 7} \) có tiệm cận ngang.
Cho hàm số \(f(x) = \frac{{\sin x - m}}{{\sin x + 1}}.\) Tìm giá trị của tham số m để giá trị lớn nhất của hàm số trên đoạn \(\left[ {0;\frac{{2\pi }}{3}} \right]\) bằng -2?
Cho hàm số y = f(x) liên tục trên R và có đồ thị hàm số y = f’(x) như hình bên:
Hỏi hàm số \(g(x) = f(3 - 2x)\) nghịch biến trên khoảng nào sau đây?
Cho hàm số \(y = - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5\) (với m là tham số). Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)?