Lời giải của giáo viên
ABCD.A'B'C'D' là hình lập phương \( \Rightarrow BC'\,{\rm{//}}\,AD' \Rightarrow BC'\,{\rm{//}}\,\left( {ACD'} \right);\,\,CD' \subset \left( {ACD'} \right)\)
\( \Rightarrow d\left( {BC'\,;\,CD'} \right) = d\left( {BC'\,;\,\left( {ACD'} \right)} \right) = d\left( {B\,;\,\left( {ACD'} \right)} \right) = d\left( {D\,;\,\left( {ACD'} \right)} \right) = h\)
Tứ diện DACD' có DA, DC, DD' đôi một vuông góc.
\( \Rightarrow \frac{1}{{{h^2}}} = \frac{1}{{D{A^2}}} + \frac{1}{{D{C^2}}} + \frac{1}{{D{{D'}^2}}} = \frac{3}{{{a^2}}} \Rightarrow h = \frac{{a\sqrt 3 }}{3}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Bất phương trình \({3^{2x + 1}} - {7.3^x} + 2 > 0\) có nghiệm là
Hàm số \(y = {\log _2}\left( {2x - 3} \right)\) có tập xác định là
Có 8 học sinh nam, 5 học sinh nữ và 1 thầy giáo được sắp xếp ngẫu nhiên đứng thành một vòng tròn. Tính xác suất để thầy giáo đứng giữa 2 học sinh nam.
Số giao điểm của đồ thị hàm số \(y = {x^4} - 5{x^2} + 4\) với trục hoành là:
Khối chóp S.ABCD có đáy là hình thoi và \(SA \bot (ABCD)\) có thể tích bằng
Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(-3;1;2), B(1;-1;0) là
Cho trước 5 chiếc ghế xếp thành một hàng ngang. Số cách xếp ba bạn A, B, C vào 5 chiếc ghế đó sao cho mỗi bạn ngồi một ghế là
Cho \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} } {\rm{d}}x\) và \(u = {x^2} - 1\). Mệnh đề nào dưới đây sai ?
Tìm tập nghiệm S của bất phương trình \({\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 1} \right)\).
Cho hàm số f(x) liên tục trên [-1;3] và có đồ thị như hình vẽ bên. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [-1;3]. Tính M - m.
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3, trục hoành và hai đường thẳng x = -1; x = 2 là
Trong không gian Oxyz cho điểm A(-2;1;3). Hình chiếu vuông góc của A lên trục Ox có tọa độ là:
Với a, b, c là các số thực dương tùy ý khác 1 và \({\log _a}c = x,{\log _b}c = y\). Khi đó giá trị của \({\log _c}\left( {ab} \right)\) là
Trong không gian, cho tam giác đều ABC cạnh bằng a. Tính thể tích khối nón nhận được khi quay tam giác ABC quanh một đường cao của nó.