Cho hình trụ có chiều cao bằng \(5\sqrt 3 \). Cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 1, thiết diện thu được có diện tích bằng 30. Diện tích xung quanh của hình trụ đã cho bằng
A. \(10\sqrt 3 \pi \)
B. \(5\sqrt {39} \pi \)
C. \(20\sqrt 3 \pi \)
D. \(10\sqrt {39} \pi \)
Lời giải của giáo viên
Gọi MNPQ là thiết diện tạo bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 1 (như hình vẽ). Khi đó MNPQ là hình chữ nhật và \(MQ = 5\sqrt 3 .\)
Diện tích MNPQ = 30, suy ra \(MN = \frac{{30}}{{5\sqrt 3 }} = 2\sqrt 3 \).
Gọi I là trung điểm của MN. Suy ra \(OI \bot MN\).
Vì MQ song song với trục của hình trụ nên MQ vuông góc với hai mặt đáy của hình trụ. Suy ra \(MQ \bot OI\).
Do đó \(OI \bot (MNPQ)\).
Vì vậy, OI = 1.
Tam giác OMI vuông tại I nên
\(OM = \sqrt {O{I^2} + I{M^2}} = \sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} = 2.\)
Diện tích xung quanh của hình trụ đã cho là \({S_{{\rm{xq}}}} = 2\pi \cdot 2 \cdot 5\sqrt 3 = 20\pi \sqrt 3 \).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) có f(2) = 15 và \(f'(x) = \frac{{x - 7}}{{x + 2 - 3\sqrt {x + 2} }}\), \(\forall x > - 1\). Khi đó \(\int\limits_2^7 f (x){\mkern 1mu} {\rm{d}}x\) bằng
Cho hàm số \(f(x) = \left| {8{x^4} + a{x^2} + b} \right|\), trong đó a, b là tham số thực. Biết rằng giá trị lớn nhất của hàm số f(x) trên đoạn [-1;1] bằng 1. Hãy chọn khẳng định đúng?
Trong không gian Oxyz cho 2 mặt phẳng (P1): 2x-2y-z+1 = 0 và (P2): x+3y-z-3 = 0. Giả sử hai mặt phẳng cắt nhau theo giao tuyến là (d) . Hãy lập phương trình đường thẳng (d)
Cho số phức z thỏa mãn \(z + 2i.\overline z = 1 + 17i\). Khi đó |z| bằng
Tìm m để giá trị lớn nhất của hàm số \(y = \left| {{x^2} + 2{\rm{x}} + m - 4} \right|\) trên đoạn [-2;1] đạt giá trị nhỏ nhất. Giá trị của m là:
Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ?
\({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\)
Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) \(\left( {a,b,c,d \in R} \right)\) có đồ thị như sau.
Tìm mệnh đề đúng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và \(SA \bot \left( {ABCD} \right)\). Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại D lấy điểm S' thỏa mãn \(S'D = \frac{1}{2}SA\) và S, S' ở cùng phía đối với mặt phẳng (ABCD). Gọi V1 là thể tích phần chung của hai khối chóp S.ABCD và S'.ABCD. Gọi V2 là thể tích khối chóp S.ABCD. Tỉ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng
Diện tích hình phẳng giới hạn bởi x = -1; x =2; y =0 ; y= x2 - 2x
Cho tam giác ABC vuông tai A biết AB = a, AC = b. Xét hình nón (N) sinh bởi tam giác ABC khi quay quanh đường thẳng AB. Thể tích hình nón (N) bằng:
Biết \({\log _a}b = 3,{\log _a}c = - 2\,\) và \(x\, = \,{a^3}{b^2}\sqrt c \). Giá trị của \({\log _a}x\) bằng.
Cho hàm số f(x) = \({\rm{a}}{{\rm{x}}^3} + b{x^2} + cx + d\) Tìm hệ số a,b,c biết f(0) = 0, f(1) = 1 và hàm số đạt cực tiểu tại x = 0 và cực đại tại x = 1.
Cho a, b > 0 thỏa mãn \(lo{g_{4a + 5b + 1}}\left( {16{a^2} + {b^2} + 1} \right) + lo{g_{8ab + 1}}\left( {4a + 5b + 1} \right) = 2.\)
Giá trị của a + 2b bằng?
Hình vẽ là đồ thị hàm số y = f(x). Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số \(y = \left| {f\left( {x - 1} \right) + m} \right|\) có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng