Cho khối hộp \(ABCD.A’B’C’D’\) có thể tích bằng \(2018\). Gọi \(M\) là trung điểm của cạnh \(AB\). Mặt phẳng \((MB'D')\) chia khối hộp \(ABCD.A’B’C’D’\) thành hai khối đa diện. Tính thể tích của phần khối đa diện chứa đỉnh \(A\).
A. \(\dfrac{{5045}}{6}\)
B. \(\dfrac{{7063}}{6}\)
C. \(\dfrac{{10090}}{{17}}\)
D. \(\dfrac{{7063}}{{12}}\)
Lời giải của giáo viên
Xét (MB’D’) và (ABCD) có:
M chung; \(B'D' \subset \left( {MB'D'} \right);\,\,BD \subset \left( {ABCD} \right);\,\,B'D'//BD\)
Do đó giao tuyến của (MB’D’) và (ABCD) là đường thẳng qua M và song song BD.
Trong (ABCD) kẻ MN // BD \(\left( {N \in AD} \right) \Rightarrow \left( {MB'D'} \right) \equiv \left( {MND'B'} \right)\) và mặt phẳng (MB’D’) chia ABCD.A’B’C’D’ thành 2 phần.
Ta có: \(\left\{ \begin{array}{l}\left( {MND'B'} \right) \cap \left( {ABB'A'} \right) = MB'\\\left( {MND'B'} \right) \cap \left( {ADD'A'} \right) = ND'\\\left( {ABB'A'} \right) \cap \left( {ADD'A'} \right) = AA'\end{array} \right. \Rightarrow AA';MB';ND'\) đồng quy tại I.
Gọi V và V1 lần lượt là thể tích của khối hộp ABCD.A’B’C’D’ và phần thể tích khối đa diện chứa điểm A. Áp dụng định lí Ta-lét ta có : \(\dfrac{{AM}}{{A'B'}} = \dfrac{{IA}}{{IA'}} = \dfrac{{IM}}{{IB'}} = \dfrac{{IN}}{{ID'}} = \dfrac{1}{2}\). Từ đó ta có :
\(\begin{array}{l}\dfrac{{{V_{I.AMN}}}}{{{V_{I.A'B'D'}}}} = \dfrac{{IA}}{{IA'}}.\dfrac{{IM}}{{IB'}}.\dfrac{{IN}}{{IC'}} = \dfrac{1}{8} \Rightarrow {V_{I.AMN}} = \dfrac{1}{8}{V_{I.A'B'D'}} \Rightarrow {V_1} = \dfrac{7}{8}{V_{I.A'B'D'}}\\\dfrac{{{V_{I.A'B'D'}}}}{V} = \dfrac{1}{3}.\dfrac{{IA'.{S_{A'B'D}}}}{{IA.{S_{ABCD}}}} = \dfrac{1}{3}.2.\dfrac{1}{2} = \dfrac{1}{3} \Rightarrow {V_{I.A'B'D'}} = \dfrac{V}{3} \Rightarrow {V_1} = \dfrac{7}{8}.\dfrac{V}{3} = \dfrac{{7V}}{{24}} = \dfrac{{7063}}{{12}}\end{array}\)
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \dfrac{{{x^2}}}{{1 - x}}\). Đạo hàm cấp 2018 của hàm số \(f\left( x \right)\) là:
Trong hệ tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng \(BC:\,\,x + 7y - 13 = 0\). Các chân đường cao kẻ từ B, C lần lượt là \(E\left( {2;5} \right);\,\,F\left( {0;4} \right)\). Biết tọa độ đỉnh A là \(A\left( {a;b} \right)\). Khi đó:
Giá trị nhỏ nhất của hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\) là:
Cho hàm số \(y = {x^3} - {x^2} + 2x + 5\) có đồ thị \(\left( C \right)\). Trong các tiếp tuyến của \(\left( C \right)\), tiếp tuyến có hệ số góc nhỏ nhất, thì hệ số góc của tiếp tuyến đó là
Cho hai số thực x, y thay đổi thỏa mãn điều kiện \({x^2} + {y^2} = 2\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 2\left( {{x^3} + {y^3}} \right) - 3xy\). Giá trị của \(M + m\) bằng:
Hàm số \(y = {x^3} - 3{x^2} - 5\) đồng biến trên khoảng nào dưới đây?
Gọi S là tập các giá trị dương của tham số m sao cho hàm số \(y = {x^3} - 3m{x^2} + 27x + 3m - 2\) đạt cực trị tại \({x_1};{x_2}\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| \le 5\). Biết \(S = \left( {a;b} \right]\). Tính \(T = 2b - a\) ?
Trong không gian với hệ tọa độ \({\rm{Ox}}yz\)cho hai mặt phẳng \(\left( P \right):2x + my - z + 1 = 0\) và \(\left( Q \right):x + 3y + \left( {2m + 3} \right)z - 2 = 0\). Giá trị của \(m\) để \(\left( P \right) \bot \left( Q \right)\) là:
Tập hợp các giá trị của tham số m để hàm số \(y =| 3{x^4} - 4{x^3} - 12{x^2} + m - 1|\) có 7 điểm cực trị là:
Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Cho hình hộp ABCD.A’B’C’D’ có tất cả các mặt là hình vuông cạnh a. Các điểm M, N lần lượt nằm trên AD’, DB sao cho \(AM = DN = x\,\,\left( {0 < x < a\sqrt 2 } \right)\). Khi x thay đổi, đường thẳng MN luôn song song với mặt phẳng cố định nào sau đây?
Giá trị của m làm cho phương trình \(\left( {m - 2} \right){x^2} - 2mx + m + 3 = 0\) có 2 nghiệm dương phân biệt là:
Hàm số có đạo hàm bằng \(2x + \dfrac{1}{{{x^2}}}\) là:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \dfrac{{mx + 1}}{{x + m}}\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\).
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là: