Lời giải của giáo viên
\(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {.3^2}.\sqrt 2 = 3\pi \sqrt 2 .\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tích phân \(\int\limits_1^2 {\frac{{\ln x}}{{{x^2}}}dx} = \frac{b}{c} + a\ln 2\) với a là số thực, b và c là các số nguyên dương, đồng thời \(\frac{b}{c}\) là phân số tối giản. Tính giá trị của biểu thức \(P = 2a + 3b + c\)
Cho đa thức \(f\left( x \right) = {\left( {1 + 3x} \right)^n} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_n}{x^n}\left( {n \in {N^*}} \right).\) Tìm hệ số \(a^3\) biết rằng \({a_1} + 2{a_2} + ... + n{a_n} = 49152n.\)
Tìm họ nguyên hàm của hàm số \(y = {x^2} - {3^x} + \frac{1}{x}.\)
Tính giới hạn \(L = \lim \frac{{{n^3} - 2n}}{{3{n^2} + n - 2}}.\)
Tìm giá trị thực của tham số m để hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực đại tại x = 0
Cho hàm số \(y = \frac{1}{3}{x^3} - 2m{x^2} + \left( {m - 1} \right)x + 2{m^2} + 1\) (m là tham số). Xác định khoảng cách lớn nhất từ gốc tọa độ O(0;0) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên.
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Tính xác suất P để hiệu số chấm trên các mặt xuất hiện của hai con súc sắc bằng 2.
Tìm hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \frac{{3 - 4x}}{{x - 2}}\) tại điểm có tung độ \(y = - \frac{7}{3}\)
Tính diện tích S của hình phẳng (H) giới hạn bởi các đường cong \(y = - {x^3} + 12x\) và \(y = - {x^2}\)
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}.\) Biết rằng hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) là trung điểm của cạnh BC. Tính thể tích V của khối lăng
trụ đó theo a.
Hình bát diện đều thuộc loại khối đa diện đều nào sau đây?
Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng d cắt hai trục Ox và Oy lần lượt tại 2 điểm A(a;0) và \(B\left( {0;b} \right)\left( {a \ne 0,b \ne 0} \right).\) Viết phương trình đường thẳng d.
Tìm điều kiện cần và đủ của a, b, c để phương trình \(a\sin x + b\cos x = c\) có nghiệm?
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và chiều cao bằng \(a\sqrt 2 .\) Tính khoảng cách từ tâm O của đáy ABCD đến một mặt bên theo a.
Tìm nghiệmcuủa phương trình \({\sin ^4}x - {\cos ^4}x = 0.\)