Cho \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số \(y=\sqrt{4-{{x}^{2}}}\) và đường thẳng \(y=2-x\) (như hình vẽ bên). Biết diện tích của hình \(\left( H \right)\) là \(S=a\pi +b\), với a, b là các số hữu tỉ. Tính \(P=2{{a}^{2}}+{{b}^{2}}\).
A. P = 6
B. P = 9
C. P = 16
D. P = 10
Lời giải của giáo viên
Diện tích hình phẳng \(\left( H \right)\) là : \(S=\int\limits_{0}^{2}{\left( \sqrt{4-{{x}^{2}}}-2+x \right) \text{d}x}\).
Đặt \(x=2\sin t\)\(\Rightarrow \text{d}x=2\cos t\text{d}t\).
\(\Rightarrow S=\int\limits_{0}^{\frac{\pi }{2}}{\left( 2\cos t-2+2\sin t \right) 2\cos t\text{d}t}=\int\limits_{0}^{\frac{\pi }{2}}{\left( 4{{\cos }^{2}}t-4\cos t+4\sin t\cos t \right) \text{d}t}\)
\(=\int\limits_{0}^{\frac{\pi }{2}}{\left( 2+2\cos 2t-4\cos t+2\sin 2t \right) \text{d}t}=\left. \left( 2t+\sin 2t-4\sin t-\cos 2t \right) \right|_{0}^{\frac{\pi }{2}}=\pi -2\).
\(\Rightarrow a=1, b=-2\)\(\Rightarrow P=2{{a}^{2}}+{{b}^{2}}=2+4=6\).
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số nguyên m để hàm số \(y={{x}^{3}}-3{{x}^{2}}-mx+4\) có hai điểm cực trị thuộc khoảng \(\left( -3;3 \right).\)
Hàm số nào trong các hàm số sau đây là một nguyên hàm của hàm số\(y={{e}^{-2x}}?\)
Trong không gian với hệ tọa độ Oxyz , cho vectơ \(\overrightarrow{AO}=3\left( \overrightarrow{i}+4\overrightarrow{j} \right)-2\overrightarrow{k}+5\overrightarrow{j}\). Tìm tọa độ của điểm A .
Trong không gian với hệ trục \(Oxyz\) , cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=12\) và mặt phẳng \(\left( P \right):2x+2y-z-3=0\) . Viết phương trình mặt phẳng \(\left( Q \right)\) song song với \(\left( P \right)\) và cắt \(\left( S \right)\) theo thiết diện là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm mặt cầu và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất .
Với \(\alpha \) là một số thực bất kỳ, mệnh đề nào sau đây sai?
Cho số phức \(z=a+bi\) \(\left( a,b\in \mathbb{R} \right)\). Khẳng định nào sau đây sai?
Trong không gian \(O\,xyz\), cho điểm \(A\left( 1;2;-1 \right)\), đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{-1}\) và mặt phẳng \(\left( P \right):x+y+2z+1=0\). Điểm B thuộc mặt phẳng \(\left( P \right)\) thỏa mãn đường thẳng AB vừa cắt vừa vuông góc với d. Tọa độ điểm B là:
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-3}{x+1}\) tương ứng có phương trình là
Xét các số phức z thỏa mãn \(\left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}\) . Gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của \(\left| z-1+i \right|\) . Tính P=m+M .
Trong không gian Oxyz, cho điểm \(M\left( 2;3;4 \right)\). Gọi A, B, C lần lượt là hình chiếu vuông góc của M lên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng \(\left( ABC \right)\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC.
Gọi \({{z}_{1}}\), \({{z}_{2}}\) là hai trong các số phức thỏa mãn \(\left| z-1+2i \right|=5\) và \(\left| {{z}_{1}}-{{z}_{2}} \right|=8\). Tìm môđun của số phức \(w={{z}_{1}}+{{z}_{2}}-2+4i\).
Trong không gian Oxyz, đường thẳng đi qua điểm \(A\left( 1;4;-7 \right)\) và vuông góc với mặt phẳng \(x+2y-2z-3=0\) có phương trình là
Trong không gian \(Oxyz\) cho mặt cầu \(\left( S \right)\) có phương trình:\({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y+4z-7=0\). Xác định tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu\(\left( S \right)\):