Lời giải của giáo viên
Diện tích mặt cầu đã cho là \(4\pi {r^2} = \frac{{8\pi {a^2}}}{3}\). Suy ra \(r = \frac{{a\sqrt 6 }}{3}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Xếp ngẫu nhiên 5 bạn An, Bình, Cường, Dũng, Đông ngồi vào 1 dãy 5 ghế thẳng hàng (mỗi bạn ngồi 1 ghế). Tính xác suất để hai bạn An và Bình không ngồi cạnh nhau.
Cho khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao h = 4. Thể tích của khối nón đã cho bằng:
Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị nhỏ nhất của hàm số \(y = \left| {{{\sin }^4}x + \cos 2x + m} \right|\) bằng 2. Số phần tử của S là:
Với a là số thực dương bất kỳ, mệnh đề nào dưới đây đúng?
Số phức nào dưới đây có điểm biểu diễn trên mặt phẳng tọa độ là điểm M như hình bên?
Tìm công thức tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi parabol \(\left( P \right):y = {x^2}\) và đường thẳng d:y = 2x quay quanh trục Ox.
Trong các hàm số sau, hàm số nào có cùng tập xác định với hàm số \(y = {x^{\frac{1}{5}}}\)?
Cho hai số phức \({z_1} = 5 - 7i,\;{z_2} = 2 - i\). Mô-đun của hiệu hai số phức đã cho bằng:
Cho tích phân \(I = \int\limits_0^1 {\sqrt[3]{{1 - x}}} dx\). Với cách đặt \(t = \sqrt[3]{{1 - x}}\) ta được
Cho tứ diện đều ABCD cạnh a, tính khoảng cách giữa hai đường thẳng AB và CD.
Cho các số a, b > 1 thỏa mãn \({\log _2}a + {\log _3}b = 1\). Tìm giá trị lớn nhất của \(P = \sqrt {{{\log }_3}a} + \sqrt {{{\log }_2}b} \).
Họ nguyên hàm của hàm số \(f\left( x \right) = {x^3} + {x^2}\) là:
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2;3) và B(3;-4;5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?
Số giao điểm của đồ thị hàm số \(y = {x^3} + x + 2\) và đường thẳng y = - 2x + 1 là:
Cho hàm số y = f(x) có đạo hàm \(f'\left( x \right) = x\left( {x - 1} \right){\left( {x + 2} \right)^2},\forall x \in R\). Số điểm cực trị của hàm số đã cho là: