Lời giải của giáo viên
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 5!.\)
Gọi A là biến cố “An và Bình không ngồi cạnh nhau”.
Khi đó \(\overline A \) là biến cố “An và Bình ngồi cạnh nhau”.
+ Có 4 cách chọn 2 vị trí liền nhau để xếp An và Bình.
+ Có 2! cách xếp An và Bình ngồi vào 2 vị trí liền nhau đã chọn.
+ Có 3! cách xếp 3 bạn còn lại vào 3 vị trí còn lại.
Suy ra số cách sắp xếp để An và Bình ngồi cạnh nhau là: \(n\left( {\overline A } \right) = 4.2!.3! = 48.\)
Do đó: \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega \right)}} = 1 - \frac{{48}}{{5!}} = \frac{3}{5}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao h = 4. Thể tích của khối nón đã cho bằng:
Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị nhỏ nhất của hàm số \(y = \left| {{{\sin }^4}x + \cos 2x + m} \right|\) bằng 2. Số phần tử của S là:
Với a là số thực dương bất kỳ, mệnh đề nào dưới đây đúng?
Số phức nào dưới đây có điểm biểu diễn trên mặt phẳng tọa độ là điểm M như hình bên?
Tìm công thức tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi parabol \(\left( P \right):y = {x^2}\) và đường thẳng d:y = 2x quay quanh trục Ox.
Cho mặt cầu có diện tích bằng \(\frac{{8\pi {a^2}}}{3}\). Tính bán kính r của mặt cầu.
Trong các hàm số sau, hàm số nào có cùng tập xác định với hàm số \(y = {x^{\frac{1}{5}}}\)?
Cho hai số phức \({z_1} = 5 - 7i,\;{z_2} = 2 - i\). Mô-đun của hiệu hai số phức đã cho bằng:
Cho tứ diện đều ABCD cạnh a, tính khoảng cách giữa hai đường thẳng AB và CD.
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Một hình trụ có bán kính đáy bằng 2 cm và có thiết diện qua trục là một hình vuông. Diện tích xung quanh của hình trụ là:
Cho tích phân \(I = \int\limits_0^1 {\sqrt[3]{{1 - x}}} dx\). Với cách đặt \(t = \sqrt[3]{{1 - x}}\) ta được
Họ nguyên hàm của hàm số \(f\left( x \right) = {x^3} + {x^2}\) là:
Cho các số a, b > 1 thỏa mãn \({\log _2}a + {\log _3}b = 1\). Tìm giá trị lớn nhất của \(P = \sqrt {{{\log }_3}a} + \sqrt {{{\log }_2}b} \).
Số giao điểm của đồ thị hàm số \(y = {x^3} + x + 2\) và đường thẳng y = - 2x + 1 là: