Cho phương trình \(m{{\ln }^{2}}(x+1)-(x+2-m)\ln (x+1)-x-2=0\) \(\left( 1 \right)\). Tập hợp tất cả giá trị của tham số m để phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt thỏa mãn \(0<{{x}_{1}}<2<4<{{x}_{2}}\) là khoảng \(\left( a;+\infty \right)\). Khi đó, a thuộc khoảng
A. (3,8;3,9)
B. (3,7;3,8)
C. (3,6;3,7)
D. (3,5;3,6)
Lời giải của giáo viên
Với điều kiện x > -1, ta biến đổi phương trình (1) tương đương với:
\(\left[ {\ln (x + 1) + 1} \right].\left[ {m\ln (x + 1) - (x + 2)} \right] = 0 \Leftrightarrow \left[ \begin{array}{l} \ln (x + 1) + 1 = 0 & & \,\,\,\,\,(a)\\ m\ln (x + 1) - (x + 2) = 0\,\,\,\,\,(b) \end{array} \right.\)
Phương trình \((a) \Leftrightarrow \ln (x + 1) = - 1 \Leftrightarrow x = \frac{1}{e} - 1 < 0\) (loại).
Phương trình \((b) \Leftrightarrow m\ln (x + 1) = x + 2\). Vì m = 0 không thỏa mãn phương trình nên:
\((b) \Leftrightarrow \frac{{\ln (x + 1)}}{{x + 2}} = \frac{1}{m}\) (*)
Khi đó, YCBT trở thành phương trình (*) có hai nghiệm phân biệt thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\)
Đặt \(f(x) = \frac{{\ln (x + 1)}}{{x + 2}},\,\,x > - 1\). Khi đó:
\(f'(x) = \frac{{\frac{{x + 2}}{{x + 1}} - \ln (x + 1)}}{{{{(x + 2)}^2}}}\,,\,f'(x) = 0 \Leftrightarrow \frac{{x + 2}}{{x + 1}} = \ln (x + 1)\)
Vì vế trái là hàm nghịch biến và vế phải là hàm đồng biến trên khoảng \(( - 1; + \infty )\) nên phương trình có tối đa 1 nghiệm. Mặt khác, \(f'(2) > 0,\,\,f'(3) < 0\) nên phương trình f'(x) = 0 có nghiệm duy nhất \({x_0} \in \left( {2;3} \right)\).
Bảng biến thiên:
Từ bảng biến thiên ta suy ra phương trình (*) có hai nghiệm phân biệt thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\) khi và chỉ khi
\(f(0) < \frac{1}{m} < f(4) \Leftrightarrow 0 < \frac{1}{m} < \frac{{\ln 5}}{6} \Leftrightarrow m > \frac{6}{{\ln 5}} \approx 3,72\).
Vậy \(a \approx 3,72 \in (3,7;3,8)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho mặt phẳng \(\left( Q \right):3\,x-2y+z-3=0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( Q \right)\)
Cho hình chóp S.ABCD có đáy ABCD là hình thoi. Biết rằng tứ diện SABD là tứ diện đều cạnh a. Khoảng cách giữa hai đường thẳng BD và SC bằng
Với a là số thực dương tùy ý, \({\log _8}\left( {{a^6}} \right)\) bằng
Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 2x - 3} }}{{2x + 1}}\) là
Diện tích S của hình phẳng giới hạn bởi các đường \(y={{x}^{3}}-6{{x}^{2}}\) và y=6-11x được tính bởi công thức nào dưới đây?
Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây ?
Xét \(\int\limits_{0}^{1}{x\sqrt{{{x}^{2}}+1}\text{d}x}\), nếu đặt \(u=\sqrt{{{x}^{2}}+1}\) thì \(\int\limits_{0}^{1}{x\sqrt{{{x}^{2}}+1}\text{d}x}\) bằng
Trong không gian Oxyz, cho đường thẳng \(d:\,\,\left\{ \begin{array}{l} x = 2 + 3t\\ y = \,\,4t\\ z = - 1 - t \end{array} \right.\). Điểm nào dưới đây thuộc d?
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d{\rm{ }}\left( {a \ne 0} \right)\) có đồ thị như hình bên. Mệnh đề nào sau đây là đúng?
Có bao nhiêu giá trị nguyên của tham số thực m sao cho hàm số \(y = \frac{1}{3}{x^3} - {x^2} - \left( {3m + 2} \right)x + 2\) nghịch biến trên đoạn có độ dài bằng 4 là
Thể tích của khối lăng trụ đứng có đáy là tam giác đều cạnh a và có chiều cao h = a là:
Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+9x+m\) (m là tham số thực). Gọi là tập hợp tất cả các giá trị của sao cho \(\underset{\left[ 0;2 \right]}{\mathop{\text{max}}}\,{{\left[ f\left( x \right) \right]}^{2}}+\underset{\left[ 0;2 \right]}{\mathop{\text{min}}}\,{{\left[ f\left( x \right) \right]}^{2}}=2020\). Số tập con của S là:
Số giao điểm của đồ thị hàm số \(y = \frac{1}{3}{x^3} + {x^2} + 2x + 2020\) với trục hoành là
Gọi \({{z}_{0}}\) là nghiệm phức có phần ảo dương của phương trình \({{z}^{2}}-4z+5=0\). Môđun của số phức \(\text{w}=i\left( {{z}_{0}}+2i \right)\) bằng