Cho S là diện tích của hình phẳng giới hạn bởi đồ thị \(\left( C \right)\) của hàm số \(y=x\sqrt{1+{{x}^{2}}}\), trục hoành, trục tung và đường thẳng x=1. Biết \(S=a\sqrt{2}+b\left( a,b\in \mathbb{Q} \right).\) Tính a+b.
A. \(a + b = \frac{1}{3}\)
B. a + b = 0
C. \(a + b = \frac{1}{6}\)
D. \(a + b = \frac{1}{2}\)
Lời giải của giáo viên
Ta có trục tung có phương trình là: x=0.
Diện tích của hình phẳng giới hạn bởi đồ thị \(\left( C \right)\) của hàm số \(y=x\sqrt{1+{{x}^{2}}}\), trục hoành, trục tung và đường thẳng x=1 là \(S=\int\limits_{0}^{1}{x\sqrt{1+{{x}^{2}}}\text{d}x}\).
Mặt khác
\(S = \int\limits_0^1 {x\sqrt {1 + {x^2}} {\rm{d}}x} = \frac{1}{2}\int\limits_0^1 {\sqrt {1 + {x^2}} {\rm{d}}\left( {1 + {x^2}} \right)} = \frac{1}{2} \cdot \frac{{{{\left( {1 + {x^2}} \right)}^{\frac{3}{2}}}}}{{\frac{3}{2}}}\left| \begin{array}{l} 1\\ 0 \end{array} \right. = \frac{1}{3} \cdot \left( {1 + {x^2}} \right)\sqrt {1 + {x^2}} \left| \begin{array}{l} 1\\ 0 \end{array} \right. = \frac{{2\sqrt 2 }}{3} - \frac{1}{3} \cdot \)
Biết \(S=a\sqrt{2}+b\left( a,b\in \mathbb{Q} \right)\) nên \(a=\frac{2}{3}\) và \(b=-\frac{1}{3}\cdot \)
Vậy \(a+b=\frac{1}{3}\cdot \).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, điểm \(M\left( 3;4;-2 \right)\) thuộc mặt phẳng nào trong các mặt phẳng sau?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S}_{m}} \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-m \right)}^{2}}=\frac{{{m}^{2}}}{4}\) và hai điểm \(A\left( 2;3;5 \right), B\left( 1;2;4 \right)\). Tìm giá trị nhỏ nhất của m để trên \(\left( {{S}_{m}} \right)\) tồn tại điểm M sao cho \(M{{A}^{2}}-M{{B}^{2}}=9\).
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, SA=2a. Tính theo a thể tích khối chóp S.ABCD.
Đạo hàm của hàm số \(f\left( x \right)={{6}^{1-3x}}\) là:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
Hỏi đồ thị hàm số \(g\left( x \right)=\left| f\left( x-2018 \right)+2019 \right|\) có bao nhiêu điểm cực trị?
Từ một hộp đựng 5 quả cầu màu đỏ, 8 quả cầu màu xanh và 7 quả cầu màu trắng, chọn ngẫu nhiên 4 quả cầu. Tính xác suất để 4 quả cầu được chọn có đúng 2 quả cầu màu đỏ.
Đường cong hình bên là đồ thị của hàm số nào trong bốn hàm số ở phương án A, B, C, D dưới đây?
Cho hàm số \(y=a{{x}^{3}}+b{{x}^{2}}+cx+d\,\left( a\,,\,b\,,\,c\,,\,d\in \mathbb{R} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là
Tọa độ giao điểm của đồ thị hàm số \(y=\frac{2x-3}{1-x}\) với trục tung là
Cho \({{\log }_{5}}7=a\) và \({{\log }_{5}}4=b.\) Biểu diễn \({{\log }_{5}}560\) dưới dạng \({{\log }_{5}}560=m.a+n.b+p,\) với \(m,\,\,n,\,\,p\) là các số nguyên. Tính S=m+n.p.
Cho hình hộp \(ABCD.{A}'{B}'{C}'{D}'\) có đáy ABCD là hình chữ nhật với AB=a, \(AD=a\sqrt{3}\). Hình chiếu vuông góc của \({A}'\) lên \(\left( ABCD \right)\) trùng với giao điểm của AC và BD. Khoảng cách từ \({B}'\) đến mặt phẳng \(\left( {A}'BD \right)\) là
Hàm số \(y=\frac{x+1}{x-1}\) nghịch biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) liên tục trên đoạn \(\left[ -2;6 \right]\), có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(f\left( x \right)\) trên miền \(\left[ -2;6 \right]\). Tính giá trị của biểu thức T=2M+3m.
Họ nguyên hàm của hàm số \(f\left( x \right)=\cos x\) là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ bên dưới.
Hàm số \(y=f\left( x \right)\) đồng biến trên khoảng nào dưới đây?